Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis - a structure-biotransformation relationship.
Bacteria
Biodegradation
Degradation
Estrogenic activity
Metabolism
Micropollutants
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
22
11
2019
accepted:
23
01
2020
revised:
08
01
2020
pubmed:
4
3
2020
medline:
29
12
2020
entrez:
4
3
2020
Statut:
ppublish
Résumé
Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.
Identifiants
pubmed: 32125477
doi: 10.1007/s00253-020-10406-4
pii: 10.1007/s00253-020-10406-4
pmc: PMC8282568
doi:
Substances chimiques
Benzhydryl Compounds
0
Cyclohexanes
0
Phenols
0
bisphenol E
0
bisphenol F
0
bisphenol B
1RC731TJJA
1,1-bis(4-hydroxyphenyl)cyclohexane
64ZF6464QY
bisphenol A
MLT3645I99
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3569-3583Commentaires et corrections
Type : ErratumIn
Références
Trends Microbiol. 2002 Nov;10(11):502-8
pubmed: 12419614
Sci Total Environ. 2019 May 15;665:574-578
pubmed: 30776629
J Biol Chem. 1994 Mar 11;269(10):7323-9
pubmed: 8125948
Environ Sci Technol. 2013 Jan 15;47(2):1017-23
pubmed: 23215053
Langmuir. 2013 Mar 26;29(12):3968-75
pubmed: 23445219
Environ Pollut. 2017 Jun;225:542-549
pubmed: 28318793
Appl Microbiol Biotechnol. 2002 Jun;59(1):62-7
pubmed: 12073133
Waste Manag. 2015 Oct;44:39-47
pubmed: 26194879
Toxicology. 2019 Feb 1;413:48-55
pubmed: 30582956
Regul Toxicol Pharmacol. 2015 Apr;71(3):453-62
pubmed: 25579646
Appl Microbiol Biotechnol. 2014 Jan;98(1):373-84
pubmed: 24158734
J Appl Microbiol. 2005;98(3):635-45
pubmed: 15715866
Toxicology. 2009 Jan 8;255(1-2):15-24
pubmed: 18973785
Environ Technol. 2014 Jan-Feb;35(1-4):416-24
pubmed: 24600882
Water Sci Technol. 2006;53(6):153-9
pubmed: 16749452
Chem Rev. 1999 Mar 10;99(3):723-44
pubmed: 11749430
Appl Environ Microbiol. 2005 Dec;71(12):8024-30
pubmed: 16332782
Environ Sci Technol. 2017 Dec 5;51(23):13698-13704
pubmed: 29110462
Physiol Rev. 2007 Jul;87(3):905-31
pubmed: 17615392
Appl Biochem Biotechnol. 2019 Sep;189(1):103-115
pubmed: 30868384
J Biol Chem. 2018 Jun 15;293(24):9520-9529
pubmed: 29716998
Toxicol In Vitro. 2017 Jun;41:143-149
pubmed: 28259788
Environ Toxicol Chem. 2003 Oct;22(10):2275-9
pubmed: 14551989
Toxicol Sci. 2005 Apr;84(2):249-59
pubmed: 15635150
Water Res. 2002 Mar;36(6):1429-38
pubmed: 11996333
Reprod Toxicol. 2007 Aug-Sep;24(2):139-77
pubmed: 17825522
Biodegradation. 2005 Oct;16(5):449-59
pubmed: 15865158
Environ Toxicol Pharmacol. 2014 Mar;37(2):738-58
pubmed: 24632011
Appl Microbiol Biotechnol. 2019 May;103(10):4137-4151
pubmed: 30941461
Appl Environ Microbiol. 2007 Aug;73(15):4776-84
pubmed: 17557840
Chemosphere. 2016 Sep;158:131-42
pubmed: 27262103
Appl Environ Microbiol. 1992 Jun;58(6):1823-31
pubmed: 1622258
Environ Sci Technol. 2016 Jun 7;50(11):5438-53
pubmed: 27143250
Crit Rev Food Sci Nutr. 2013;53(4):386-402
pubmed: 23320909
Drug Metab Dispos. 2001 Aug;29(8):1084-7
pubmed: 11454725
FEBS J. 2012 May;279(9):1675-93
pubmed: 22356105
Chemosphere. 1998 Apr;36(10):2321-35
pubmed: 9566302
Toxicol In Vitro. 2015 Oct;29(7):1464-72
pubmed: 26028149
Appl Microbiol Biotechnol. 2013 Jul;97(13):5681-9
pubmed: 23681588
Appl Microbiol Biotechnol. 2017 May;101(9):3743-3758
pubmed: 28050635
J Appl Microbiol. 2008 Oct;105(4):1158-69
pubmed: 18492046
Appl Microbiol Biotechnol. 2016 Feb;100(4):1967-1976
pubmed: 26515562
Environ Toxicol Pharmacol. 2016 Oct;47:182-199
pubmed: 27771500
Chemosphere. 2007 Oct;69(6):934-41
pubmed: 17629547
Sci Total Environ. 2019 Nov 20;692:107-116
pubmed: 31344564
Arch Pharm Res. 2003 Oct;26(10):805-8
pubmed: 14609127
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14930-5
pubmed: 22927406
J Agric Food Chem. 2009 Sep 9;57(17):7931-7
pubmed: 19691325
Appl Microbiol Biotechnol. 2009 Jan;81(6):1023-31
pubmed: 18836714
Appl Environ Microbiol. 2000 Oct;66(10):4528-31
pubmed: 11010910