A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 03 2020
Historique:
received: 18 06 2019
accepted: 13 02 2020
entrez: 6 3 2020
pubmed: 7 3 2020
medline: 27 6 2020
Statut: epublish

Résumé

Improved identification of bacterial and viral infections would reduce morbidity from sepsis, reduce antibiotic overuse, and lower healthcare costs. Here, we develop a generalizable host-gene-expression-based classifier for acute bacterial and viral infections. We use training data (N = 1069) from 18 retrospective transcriptomic studies. Using only 29 preselected host mRNAs, we train a neural-network classifier with a bacterial-vs-other area under the receiver-operating characteristic curve (AUROC) 0.92 (95% CI 0.90-0.93) and a viral-vs-other AUROC 0.92 (95% CI 0.90-0.93). We then apply this classifier, inflammatix-bacterial-viral-noninfected-version 1 (IMX-BVN-1), without retraining, to an independent cohort (N = 163). In this cohort, IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.86 (95% CI 0.77-0.93), and viral-vs.-other 0.85 (95% CI 0.76-0.93). In patients enrolled within 36 h of hospital admission (N = 70), IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.92 (95% CI 0.83-0.99), and viral-vs.-other 0.91 (95% CI 0.82-0.98). With further study, IMX-BVN-1 could provide a tool for assessing patients with suspected infection and sepsis at hospital admission.

Identifiants

pubmed: 32132525
doi: 10.1038/s41467-020-14975-w
pii: 10.1038/s41467-020-14975-w
pmc: PMC7055276
doi:

Substances chimiques

RNA, Messenger 0

Types de publication

Evaluation Study Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1177

Subventions

Organisme : NHLBI NIH HHS
ID : K23 HL125663
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI109662
Pays : United States

Références

Fleischmann, C. et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med 193, 259–272 (2016).
pubmed: 26414292 doi: 10.1164/rccm.201504-0781OC
Liu, V., et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312, 90–92 (2014).
pubmed: 24838355 doi: 10.1001/jama.2014.5804
Torio, C. A., Andrews, R. A. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. HCUP Statistical Brief #160 (Agency for Healthcare Research and Quality, Rockville, MD, 2013).
Tamma, P. D., Avdic, E., Li, D. X., Dzintars, K. & Cosgrove, S. E. Association of adverse events with antibiotic use in hospitalized patients. JAMA Intern Med. 177, 1308–1315 (2017).
pubmed: 28604925 pmcid: 5710569 doi: 10.1001/jamainternmed.2017.1938
Ferrer, R. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program*. Crit. Care Med. 42, 1749–1755 (2014).
pubmed: 24717459 doi: 10.1097/CCM.0000000000000330
Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).
pubmed: 26903338 pmcid: 4968574 doi: 10.1001/jama.2016.0287
Chen, A. X., Simpson, S. Q. & Pallin, D. J. Sepsis guidelines. N. Engl. J. Med 380, 1369–1371 (2019).
pubmed: 30943343 doi: 10.1056/NEJMclde1815472
Coburn, B., Morris, A. M., Tomlinson, G. & Detsky, A. S. Does this adult patient with suspected bacteremia require blood cultures? JAMA 308, 502–511 (2012).
pubmed: 22851117 doi: 10.1001/jama.2012.8262
Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med 373, 415–427 (2015).
pubmed: 26172429 pmcid: 4728150 doi: 10.1056/NEJMoa1500245
Lydon, E. C., Ko, E. R. & Tsalik, E. L. The host response as a tool for infectious disease diagnosis and management. Expert Rev. Mol. Diagn. 18, 723–738 (2018).
pubmed: 29939801 doi: 10.1080/14737159.2018.1493378
Sweeney, T. E., Shidham, A., Wong, H. R. & Khatri, P. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci. Transl. Med. 7, 287ra271 (2015).
doi: 10.1126/scitranslmed.aaa5993
Sweeney, T. E., Wong, H. R. & Khatri, P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci. Transl. Med. 8, 346ra391 (2016).
doi: 10.1126/scitranslmed.aaf7165
Sweeney, T. E. et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat. Commun. 9, 694 (2018).
pubmed: 29449546 pmcid: 5814463 doi: 10.1038/s41467-018-03078-2
McHugh, L. et al. A molecular host response assay to discriminate between sepsis and infection-negative systemic inflammation in critically Ill patients: discovery and validation in independent cohorts. PLoS Med. 12, e1001916 (2015).
pubmed: 26645559 pmcid: 4672921 doi: 10.1371/journal.pmed.1001916
Scicluna, B. P. et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am. J. Respir. Crit. Care Med 192, 826–835 (2015).
pubmed: 26121490 doi: 10.1164/rccm.201502-0355OC
Andres-Terre, M. et al. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity 43, 1199–1211 (2015).
pubmed: 26682989 pmcid: 4684904 doi: 10.1016/j.immuni.2015.11.003
Warsinske, H., Vashisht, R. & Khatri, P. Host-response-based gene signatures for tuberculosis diagnosis: a systematic comparison of 16 signatures. PLoS Med. 16, e1002786 (2019).
pubmed: 31013272 pmcid: 6478271 doi: 10.1371/journal.pmed.1002786
Lydon, E. C. et al. A host gene expression approach for identifying triggers of asthma exacerbations. PLoS ONE 14, e0214871 (2019).
pubmed: 30958855 pmcid: 6453459 doi: 10.1371/journal.pone.0214871
Khatri, P. et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J. Exp. Med. 210, 2205–2221 (2013).
pubmed: 24127489 pmcid: 3804941 doi: 10.1084/jem.20122709
Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med 4, 213–224 (2016).
pubmed: 26907218 pmcid: 4838193 doi: 10.1016/S2213-2600(16)00048-5
Lofgren, S. et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight 1, e89073 (2016).
pubmed: 28018971 pmcid: 5161207 doi: 10.1172/jci.insight.89073
Sweeney, T. E. & Khatri, P. Benchmarking sepsis gene expression diagnostics using public data. Crit. Care Med. 45, 1–10 (2017).
pubmed: 27681387 pmcid: 5518756 doi: 10.1097/CCM.0000000000002021
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).
doi: 10.1093/biostatistics/kxj037
Almansa, R. et al. Critical COPD respiratory illness is linked to increased transcriptomic activity of neutrophil proteases genes. BMC Res. Notes 5, 401 (2012).
pubmed: 22852767 pmcid: 3475085 doi: 10.1186/1756-0500-5-401
Almansa, R. et al. Transcriptomic correlates of organ failure extent in sepsis. J. Infect. 70, 445–456 (2015).
pubmed: 25557485 doi: 10.1016/j.jinf.2014.12.010
Burnham, K. L., et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am. J. Respir. Crit. Care Med. 196, 328–339 (2016).
pubmed: 28036233 pmcid: 5549866 doi: 10.1164/rccm.201608-1685OC
Pankla, R. et al. Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol. 10, R127 (2009).
pubmed: 19903332 pmcid: 3091321 doi: 10.1186/gb-2009-10-11-r127
Parnell, G. P. et al. A distinct influenza infection signature in the blood transcriptome of patients with severe community-acquired pneumonia. Crit. Care. 16, R157 (2012).
pubmed: 22898401 pmcid: 3580747 doi: 10.1186/cc11477
Bermejo-Martin, J. F., et al. Host adaptive immunity deficiency in severe pandemic influenza. Crit Care 14, R167 (2010).
pubmed: 20840779 pmcid: 3219262 doi: 10.1186/cc9259
Berdal, J. E. et al. Excessive innate immune response and mutant D222G/N in severe A (H1N1) pandemic influenza. J. Infect. 63, 308–316 (2011).
pubmed: 21781987 doi: 10.1016/j.jinf.2011.07.004
Sutherland, A. et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit. Care. 15, R149 (2011).
pubmed: 21682927 pmcid: 3219023 doi: 10.1186/cc10274
Parnell, G. P. et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions. Shock 40, 166–174 (2013).
pubmed: 23807251 doi: 10.1097/SHK.0b013e31829ee604
Bloom, C. I. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS ONE 8, e70630 (2013).
pubmed: 23940611 pmcid: 3734176 doi: 10.1371/journal.pone.0070630
Cazalis, M. A. et al. Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive Care Med Exp. 2, 20 (2014).
pubmed: 26215705 pmcid: 4512996 doi: 10.1186/s40635-014-0020-3
Suarez, N. M. et al. Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults. J. Infect. Dis. 212, 213–222 (2015).
pubmed: 25637350 pmcid: 4565998 doi: 10.1093/infdis/jiv047
Zhai, Y. et al. Host transcriptional response to influenza and other acute respiratory viral infections–a prospective cohort study. PLoS Pathog. 11, e1004869 (2015).
pubmed: 26070066 pmcid: 4466531 doi: 10.1371/journal.ppat.1004869
Tang B. M., Feng C. G., McLean A. S. Understanding the role of host response in influenza pneumonitis. Intensive Care Med. 45, 1012–1014 (2019).
pubmed: 31020362 doi: 10.1007/s00134-019-05582-5 pmcid: 31020362
Dunning, J. et al. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nat. Immunol. 19, 625–635 (2018).
pubmed: 29777224 pmcid: 5985949 doi: 10.1038/s41590-018-0111-5
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Tabe-Bordbar, S., Emad, A., Zhao, S. D. & Sinha, S. A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models. Sci. Rep. 8, 6620 (2018).
pubmed: 29700343 pmcid: 5920056 doi: 10.1038/s41598-018-24937-4
Sweeney, T. E. et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit. Care Med 46, 915–925 (2018).
pubmed: 29537985 pmcid: 5953807 doi: 10.1097/CCM.0000000000003084
Wong, H. R. et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 7, 34 (2009).
pubmed: 19624809 pmcid: 2720987 doi: 10.1186/1741-7015-7-34
Sweeney, T. E. & Khatri, P. Generalizable Biomarkers in Critical Care: Toward Precision Medicine. Crit. Care Med 45, 934–939 (2017).
pubmed: 28509729 pmcid: 5800880 doi: 10.1097/CCM.0000000000002402
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint at https://arxiv.org/abs/1502.0316 (2015).
Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7, 91 (2006).
doi: 10.1186/1471-2105-7-91
Krstajic, D., Buturovic, L. J., Leahy, D. E. & Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 6, 10 (2014).
pubmed: 24678909 pmcid: 3994246 doi: 10.1186/1758-2946-6-10

Auteurs

Michael B Mayhew (MB)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Ljubomir Buturovic (L)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Roland Luethy (R)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Uros Midic (U)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Andrew R Moore (AR)

Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

Jonasel A Roque (JA)

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

Brian D Shaller (BD)

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

Tola Asuni (T)

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

David Rawling (D)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Melissa Remmel (M)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Kirindi Choi (K)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

James Wacker (J)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA.

Purvesh Khatri (P)

Institute for Immunity, Transplantation and Infections, Stanford University, Palo Alto, CA, 94305, USA.
Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

Angela J Rogers (AJ)

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, 94305, USA.

Timothy E Sweeney (TE)

Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA, 94010, USA. tsweeney@inflammatix.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH