Parental repeat length instability in myotonic dystrophy type 1 pre- and protomutations.
Journal
European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
22
08
2019
accepted:
25
02
2020
revised:
14
02
2020
pubmed:
24
3
2020
medline:
28
5
2021
entrez:
24
3
2020
Statut:
ppublish
Résumé
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.
Identifiants
pubmed: 32203199
doi: 10.1038/s41431-020-0601-4
pii: 10.1038/s41431-020-0601-4
pmc: PMC7316980
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
956-962Références
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell. 1992;69:385.
pubmed: 1568252
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet. 2005;6:743–55.
pubmed: 16205714
Harper PS. Myotonic dystrophy present management, future therapy. Oxford: Oxford University Press; 2004.
Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochimica et Biophysica Acta. 2015;1852:594–606.
pubmed: 24882752
Imbert G, Kretz C, Johnson K, Mandel JL. Origin of the expansion mutation in myotonic dystrophy. Nat Genet. 1993;4:72–6.
pubmed: 8513329
Rubinsztein DC, Leggo J, Amos W, Barton DE, Ferguson-Smith MA. Myotonic dystrophy CTG repeats and the associated insertion/deletion polymorphism in human and primate populations. Hum Mol Genet. 1994;3:2031–5.
pubmed: 7874122
Goldman A, Ramsay M, Jenkins T. Absence of myotonic dystrophy in southern African Negroids is associated with a significantly lower number of CTG trinucleotide repeats. J Med Genet. 1994;31:37.
pubmed: 8151635
pmcid: 1049596
Neville CE, Mahadevan MS, Barcelo JM, Korneluk RG. High resolution genetic analysis suggests one ancestral predisposing haplotype for the origin of the myotonic dystrophy mutation. Hum Mol Genet. 1994;3:45–51.
pubmed: 7909252
Zerylnick C, Torroni A, Sherman SL, Warren ST. Normal variation at the myotonic dystrophy locus in global human populations. Am J Hum Genet. 1995;56:123–30.
pubmed: 7825567
pmcid: 1801327
Yamagata H, Miki T, Sakoda S, Yamanaka N, Davies J, Shelbourne P, et al. Detection of a premutation in Japanese myotonic dystrophy. Hum Mol Genet. 1994;3:819–20.
pubmed: 8081369
Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20:1203–8.
pubmed: 22643181
pmcid: 3499739
Barcelo JM, Mahadevan MS, Tsilfidis C, MacKenzie AE, Korneluk RG. Intergenerational stability of the myotonic dystrophy protomutation. Hum Mol Genet. 1993;2:705–9.
pubmed: 8353489
Martorell L, Monckton DG, Sanchez A, Lopez de Munain A, Baiget M. Frequency and stability of the myotonic dystrophy type 1 premutation. Neurology. 2001;56:328–35.
pubmed: 11171897
Ashizawa T, Dubel JR, Dunne PW, Dunne CJ, PhD YHF, Md AP, et al. Anticipation in myotonic dystrophy: II. Complex relationships between clinical findings and structure of the GCT repeat. Neurology. 1992;42:1877–83.
pubmed: 1407566
Hunter A, Tsilfidis C, Mettler G, Jacob P, Mahadevan M, Surh L, et al. The correlation of age of onset with CTG trinucleotide repeat amplification in myotonic dystrophy. J Med Genet. 1992;29:774.
pubmed: 1453425
pmcid: 1016169
Shelbourne P, Winqvist R, Kunert E, Davies J, Leisti J, Thiele H, et al. Unstable DNA may be responsible for the incomplete penetrance of the myotonic dystrophy phenotype. Hum Mol Genet. 1992;1:467–73.
pubmed: 1307246
Brunner HG, Brüggenwirth HT, Nillesen W, Jansen G, Hamel BC, Hoppe RL, et al. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM). Am J Hum Genet. 1993;53:1016–23.
pubmed: 8213829
pmcid: 1682295
Redman JB, Fenwick RG Jr., Fu YH, Pizzuti A, Caskey CT. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. J Am Med Assoc. 1993;269:1960–5.
Monckton DG, Wong LJ, Ashizawa T, Caskey CT. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet. 1995;4:1–8.
pubmed: 7711720
Abbruzzese C, Costanzi Porrini S, Mariani B, Gould FK, McAbney JP, Monckton DG, et al. Instability of a premutation allele in homozygous patients with myotonic dystrophy type 1. Ann Neurol. 2002;52:435–41.
pubmed: 12325072
Pratte A, Prevost C, Puymirat J, Mathieu J. Anticipation in myotonic dystrophy type 1 parents with small CTG expansions. Am J Med Genet A. 2015;167a:708–14.
pubmed: 25712547
Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet. 1996;33:1022–6.
pubmed: 9004136
pmcid: 1050815
Harley HG, Rundle SA, MacMillan JC, Myring J, Brook JD, Crow S, et al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet. 1993;52:1164–74.
pubmed: 8503448
pmcid: 1682262
Jansen G, Willems P, Coerwinkel M, Nillesen W, Smeets H, Vits L, et al. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am J Hum Genet. 1994;54:575–85.
pubmed: 8128954
pmcid: 1918095
de Die-Smulders CE, Smeets HJ, Loots W, Anten HB, Mirandolle JF, Geraedts JP, et al. Paternal transmission of congenital myotonic dystrophy. J Med Genet. 1997;34:930–3.
pubmed: 9391889
pmcid: 1051123
Zeesman S, Carson N, Whelan DT. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet. 2002;107:222–6.
pubmed: 11807903
Bergoffen J, Kant J, Sladky J, McDonald-McGinn D, Zackai EH, Fischbeck KH. Paternal transmission of congenital myotonic dystrophy. J Med Genet. 1994;31:518–20.
pubmed: 7966187
pmcid: 1049972
Nakagawa M, Yamada H, Higuchi I, Kaminishi Y, Miki T, Johnson K, et al. A case of paternally inherited congenital myotonic dystrophy. J Med Genet. 1994;31:397–400.
pubmed: 8064819
pmcid: 1049873
Ohya K, Tachi N, Chiba S, Sato T, Kon S, Kikuchi K, et al. Congenital myotonic dystrophy transmitted from an asymptomatic father with a DM-specific gene. Neurology. 1994;44:1958–60.
pubmed: 7936256
Semaka A, Creighton S, Warby S, Hayden MR. Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clin Genet. 2006;70:283–94.
pubmed: 16965319
Semaka A, Collins JA, Hayden MR. Unstable familial transmissions of Huntington disease alleles with 27-35 CAG repeats (intermediate alleles). Am J Med Genet B Neuropsychiatr Genet. 2010;153b:314–20.
pubmed: 19455596
Kremer B, Almqvist E, Theilmann J, Spence N, Telenius H, Goldberg YP, et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J Hum Genet. 1995;57:343–50.
pubmed: 7668260
pmcid: 1801544
Losekoot M, van Belzen MJ, Seneca S, Bauer P, Stenhouse SAR, Barton DE, et al. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease. Eur J Hum Genet. 2013;21:480–6.
pubmed: 22990145
Neto JL, Lee JM, Afridi A, Gillis T, Guide JR, Dempsey S, et al. Genetic contributors to intergenerational CAG repeat instability in Huntington’s disease knock-in mice. Genetics. 2017;205:503–16.
pubmed: 27913616
Musova Z, Mazanec R, Krepelova A, Ehler E, Vales J, Jaklova R, et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet A. 2009;149a:1365–74.
pubmed: 19514047
Braida C, Stefanatos RK, Adam B, Mahajan N, Smeets HJ, Niel F, et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet. 2010;19:1399–412.
pubmed: 20080938
Barbé L, Lanni S, López-Castel A, Franck S, Spits C, Keymolen K, et al. CpG methylation, a parent-of-origin effect for maternal-biased transmission of congenital myotonic dystrophy. Am J Hum Genet. 2017;100:488–505.
pubmed: 28257691
pmcid: 5339342
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, et al. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet. 2010;20:1–15.
pubmed: 21044947
pmcid: 3000673
Pesovic J, Peric S, Brkusanin M, Brajuskovic G, Rakocevic-Stojanovic V, Savic-Pavicevic D. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics. 2017;18:207–18.
pubmed: 28942489
Wong LJ, Ashizawa T, Monckton DG, Caskey CT, Richards CS. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J Hum Genet. 1995;56:114–22.
pubmed: 7825566
pmcid: 1801291
Martorell L, Monckton DG, Gamez J, Johnson KJ, Gich I, Lopez de Munain A, et al. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum Mol Genet. 1998;7:307–12.
pubmed: 9425239