Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae.
Journal
Heredity
ISSN: 1365-2540
Titre abrégé: Heredity (Edinb)
Pays: England
ID NLM: 0373007
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
11
10
2019
accepted:
02
03
2020
revised:
02
03
2020
pubmed:
24
3
2020
medline:
27
8
2021
entrez:
24
3
2020
Statut:
ppublish
Résumé
Recombination shapes the evolutionary trajectory of populations and plays an important role in the faithful transmission of chromosomes during meiosis. Levels of sexual reproduction and recombination are important properties of host-pathogen interactions because the speed of antagonistic co-evolution depends on the ability of hosts and pathogens to generate genetic variation. However, our understanding of the importance of recombination is limited because large taxonomic groups remain poorly investigated. Here, we analyze recombination rate variation in the basidiomycete fungus Armillaria ostoyae, which is an aggressive pathogen on a broad range of conifers and other trees. We analyzed a previously constructed, dense genetic map based on 198 single basidiospore progeny from a cross. Progeny were genotyped at a genome-wide set of single-nucleotide polymorphism (SNP) markers using double digest restriction site associated DNA sequencing. Based on a linkage map of on 11,700 SNPs spanning 1007.5 cM, we assembled genomic scaffolds into 11 putative chromosomes of a total genome size of 56.6 Mb. We identified 1984 crossover events among all progeny and found that recombination rates were highly variable along chromosomes. Recombination hotspots tended to be in regions close to the telomeres and were more gene-poor than the genomic background. Genes in proximity to recombination hotspots were encoding on average shorter proteins and were enriched for pectin degrading enzymes. Our analyses enable more powerful population and genome-scale studies of a major tree pathogen.
Identifiants
pubmed: 32203246
doi: 10.1038/s41437-020-0306-z
pii: 10.1038/s41437-020-0306-z
pmc: PMC7239928
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
699-713Références
Alves I, Houle AA, Hussin JG, Awadalla P (2017) The impact of recombination on human mutation load and disease. Philos Trans R Soc Lond B Biol Sci 372:20160465
pubmed: 29109227
pmcid: 5698626
doi: 10.1098/rstb.2016.0465
Anderson JB, Ullrich RC (1979) Biological species of Armillaria mellea in North America. Mycologia 71:402–414
doi: 10.1080/00275514.1979.12021018
Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield BD, Wingfield MJ (2017) A plant pathology perspective of fungal genome sequencing. IMA Fungus 8:1–15
pubmed: 28824836
pmcid: 5493528
doi: 10.5598/imafungus.2017.08.01.01
Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990
pubmed: 9748151
doi: 10.1126/science.281.5385.1986
Baumgartner K, Coetzee MPA, Hoffmeister D (2011) Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol 12:515–534
pubmed: 21722292
pmcid: 6640247
doi: 10.1111/j.1364-3703.2010.00693.x
Bendel M, Kienast F, Rigling D (2006a) Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycol Res 110:705–712
pubmed: 16616839
doi: 10.1016/j.mycres.2006.02.002
Bendel M, Kienast F, Rigling D, Bugmann H (2006b) Impact of root-rot pathogens on forest succession in unmanaged Pinus mugo stands in the Central Alps. Can J Res 36:2666–2674
doi: 10.1139/x06-147
Broman KW, Wu H, Sen, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890
pubmed: 12724300
pmcid: 12724300
doi: 10.1093/bioinformatics/btg112
Brown AJ, Casselton LA (2001) Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17:393–400
pubmed: 11418220
doi: 10.1016/S0168-9525(01)02343-5
Charlesworth B, Barton NH (1996) Recombination load associated with selection for increased recombination. Genet Res 67:27–41
pubmed: 8919888
doi: 10.1017/S0016672300033450
Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc B 355:1563–1572
doi: 10.1098/rstb.2000.0717
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X et al. (2016) Recombination rate heterogeneity within arabidopsis disease resistance genes. PLOS Genet 12:e1006179
pubmed: 27415776
pmcid: 4945094
doi: 10.1371/journal.pgen.1006179
Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S (2013) Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res 12:2552–2570
pubmed: 23656496
pmcid: 3679558
doi: 10.1021/pr301131t
Croll D, Lendenmann MH, Stewart E, McDonald BA (2015) The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 201:1213–1228
pubmed: 26392286
pmcid: 4649646
doi: 10.1534/genetics.115.180968
Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D (2007) A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res 17:61–68
pubmed: 17090663
pmcid: 1716267
doi: 10.1101/gr.5512906
Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J Res 33:612–623
doi: 10.1139/x03-065
Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G et al. (2009) Broad-scale recombination patterns underlying proper disjunction in humans. PLOS Genet 5:e1000658
pubmed: 19763175
pmcid: 2734982
doi: 10.1371/journal.pgen.1000658
Foulongne-Oriol M (2012) Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 95:891–904
pubmed: 22743715
doi: 10.1007/s00253-012-4228-4
Guillaumin JJ, Legrand P, Lung-Escarmant B, Botton B (eds) (2005) L’armillaire et le pourridié-agaric des végétaux ligneux. INRA: Paris, p 487
Guillaumin JJ, Mohammed C, Anselmi N, Courtecuisse R, Gregory SC, Holdenrieder O et al. (1993) Geographical distribution and ecology of the Armillaria species in western Europe. Eur J For Pathol 23:321–341
doi: 10.1111/j.1439-0329.1993.tb00814.x
Haenel Q, Laurentino TG, Roesti M, Berner D (2018) Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 27:2477–2497
pubmed: 29676042
doi: 10.1111/mec.14699
Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290
doi: 10.2307/3544435
Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291
pubmed: 11283700
doi: 10.1038/35066065
Heinzelmann R, Croll D, Zoller S, Sipos G, Münsterkötter M, Güldener U et al. (2017) High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae. Fungal Genet Biol 108:44–54
pubmed: 28860084
doi: 10.1016/j.fgb.2017.08.007
Heinzelmann R, Dutech C, Tsykun T, Labbé F, Soularue J-P, Prospero S (2019) Latest advances and future perspectives in Armillaria research. Can J Plant Pathol 41:1–23
doi: 10.1080/07060661.2018.1558284
Herbert C, Boudart G, Borel C, Jacquet C, Esquerre-Tugaye M, Dumas B (2003) Regulation and role of pectinases in phytopathogenic fungi. In: Voragen F, Schols H, Visser R (eds) Advances in pectin and pectinase research. Springer, Dordrecht, p 201–220
doi: 10.1007/978-94-017-0331-4_15
Hill WG, Robertson A (2009) The effect of linkage on limits to artificial selection. Genet Res 8:269–294
doi: 10.1017/S0016672300010156
Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill F-X, Goodhead I et al. (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella typhi. Nat Genet 40:987
pubmed: 18660809
pmcid: 2652037
doi: 10.1038/ng.195
Hood IA, Redfern DB, Kile GA (1991) Armillaria in planted hosts. In: Shaw III CG, Kile GA (eds) Armillaria root disease. Agricultural handbook no. 691. USDA Forest Service, Washington D.C., p 122–149
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240
pubmed: 24451626
pmcid: 3998142
doi: 10.1093/bioinformatics/btu031
Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036
pubmed: 15111065
doi: 10.1016/j.jmb.2004.03.016
King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE (2015) The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genom 16:544
doi: 10.1186/s12864-015-1756-1
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580
doi: 10.1006/jmbi.2000.4315
pubmed: 11152613
Laflamme G, Guillaumin JJ (2005) L’armillaire, agent pathogène mondial: répartition et dégâts. In: Guillaumin JJ, Legrand P, Lung-Escarmant B, Botton B (eds) L’ armillaire et la pourridié-agaric des végétaux ligneux. INRA, Paris, p 273–289
Larraya LM, Perez G, Penas MM, Baars JJP, Mikosch TSP, Pisabarro AG et al. (1999) Molecular karyotype of the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 65:3413–3417
pubmed: 10427028
pmcid: 91513
doi: 10.1128/AEM.65.8.3413-3417.1999
Laurent B, Palaiokostas C, Spataro C, Moinard M, Zehraoui E, Houston RD et al. (2018) High-resolution mapping of the recombination landscape of the phytopathogen Fusarium graminearum suggests two-speed genome evolution. Mol Plant Pathol 19:341–354
pubmed: 27998012
doi: 10.1111/mpp.12524
Legrand P, Ghahari S, Guillaumin J-J (1996) Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae. N Phytol 133:321–332
doi: 10.1111/j.1469-8137.1996.tb01899.x
Lively CM (2010) A review of red queen models for the persistence of obligate sexual reproduction. J Hered 101:S13–S20
pubmed: 20421322
doi: 10.1093/jhered/esq010
Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485
pubmed: 18615017
pmcid: 2780006
doi: 10.1038/nature07135
McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379
pubmed: 12147764
pmcid: 12147764
doi: 10.1146/annurev.phyto.40.120501.101443
McLaughlin JA (2001) Impact of Armillaria root disease on succession in red pine plantations in southern Ontario. For Chron 77:519–524
doi: 10.5558/tfc77519-3
Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Micro 15:756
doi: 10.1038/nrmicro.2017.76
Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM (2011) Running with the red queen: Host-parasite coevolution selects for biparental sex. Science 333:216–218
pubmed: 21737739
pmcid: 3402160
doi: 10.1126/science.1206360
Morrison DJ, Chu D, Johnson ALS (1985) Species of Armillaria in British-Columbia. Can J Plant Pathol 7:242–246
doi: 10.1080/07060668509501685
Mueller GJ, Mueller GM, Shih L-H, Ammirati JF (1993) Cytological studies in Laccaria (Agaricales) I. Meiosis and postmeiotic mitosis. Am J Bot 80:316–321
doi: 10.1002/j.1537-2197.1993.tb13805.x
Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res/Fundam Mol Mech Mutagen 1:2–9
doi: 10.1016/0027-5107(64)90047-8
Müller MC, Praz CR, Sotiropoulos AG, Menardo F, Kunz L, Schudel S et al. (2019) A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. N Phytol 221:2176–2189
doi: 10.1111/nph.15529
Muraguchi H, Ito Y, Kamada T, Yanagi SO (2003) A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genet Biol 40:93–102
pubmed: 14516762
doi: 10.1016/S1087-1845(03)00087-2
Nelson MI, Holmes EC (2007) The evolution of epidemic influenza. Nat Rev Genet 8:196
pubmed: 17262054
doi: 10.1038/nrg2053
Ota Y, Matsushita N, Nagasawa E, Terashita T, Fukuda K, Suzuki K (1998) Biological species of Armillaria in Japan. Plant Dis 82:537–543
pubmed: 30856984
doi: 10.1094/PDIS.1998.82.5.537
Otto SP, Barton NH (1997) The evolution of recombination: removing the limits to natural selection. Genetics 147:879–906
pubmed: 9335621
pmcid: 1208206
Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261
pubmed: 11967550
doi: 10.1038/nrg761
Peter M, Kohler A, Ohm RA, Kuo A, Krützmann J, Morin E et al. (2016) Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun 7:12662
pubmed: 27601008
pmcid: 5023957
doi: 10.1038/ncomms12662
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786
pubmed: 21959131
doi: 10.1038/nmeth.1701
Prospero S, Holdenrieder O, Rigling D (2004) Comparison of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances. For Pathol 34:1–14
doi: 10.1046/j.1437-4781.2003.00339.x
Prospero S, Lung-Escarmant B, Dutech C (2008) Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France. Mol Ecol 17:3366–3378
pubmed: 18564091
doi: 10.1111/j.1365-294X.2007.03829.x
Qin GF, Zhao J, Korhonen K (2007) A study on intersterility groups of Armillaria in China. Mycologia 99:430–441
pubmed: 17883035
doi: 10.1080/15572536.2007.11832568
R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rishbeth J (1985) Infection cycle of Armillaria and host response. Eur J For Pathol 15:332–341
doi: 10.1111/j.1439-0329.1985.tb01108.x
Roth C, Sun S, Billmyre RB, Heitman J, Magwene PM (2018) A high-resolution map of meiotic recombination in Cryptococcus deneoformans demonstrates decreased recombination in unisexual reproduction. Genetics 209:567–578
pubmed: 29625994
pmcid: 5972427
doi: 10.1534/genetics.118.300996
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A et al. (2018) The genome biology of effector gene evolution in filamentous plant pathogens. Annu Rev Phytopathol 56:21–40
pubmed: 29768136
doi: 10.1146/annurev-phyto-080516-035303
Shaw III CG, Kile GA (eds) (1991) Armillaria root disease. Agricultural handbook no. 691. USDA Forest Service, Washington D.C., p 233
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212
doi: 10.1093/bioinformatics/btv351
pubmed: 26059717
Sipos G, Prasanna AN, Walter MC, O’Connor E, Bálint B, Krizsán K et al. (2017) Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol 1:1931–1941
pubmed: 29085064
doi: 10.1038/s41559-017-0347-8
Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M (2012) Centromeres of filamentous fungi. Chromosome Res 20:635–656
pubmed: 22752455
pmcid: 3409310
doi: 10.1007/s10577-012-9290-3
Sonnenberg ASM, de Groot PW, Schaap PJ, Baars JJP, Visser J, Van Griensven LJ (1996) Isolation of expressed sequence tags of Agaricus bisporus and their assignment to chromosomes. Appl Environ Microbiol 62:4542–4547
pubmed: 8953726
pmcid: 168281
doi: 10.1128/AEM.62.12.4542-4547.1996
Sonnenberg ASM, Gao W, Lavrijssen B, Hendrickx P, Sedaghat-Tellgerd N, Foulongne-Oriol M et al. (2016) A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol 93:35–45
pubmed: 27288752
doi: 10.1016/j.fgb.2016.06.001
Stukenbrock EH, Dutheil JY (2018) Fine-scale recombination maps of fungal plant pathogens reveal dynamic recombination landscapes and intragenic hotspots. Genetics 208:1209–1229
pubmed: 29263029
doi: 10.1534/genetics.117.300502
Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100
pubmed: 18680424
doi: 10.1146/annurev.phyto.010708.154114
Taylor J, Butler D (2017) R Package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Softw 79:1–29
doi: 10.18637/jss.v079.i06
Van Kan JAL, Stassen JHM, Mosbach A, Van Der Lee TAJ, Faino L, Farmer AD et al. (2017) A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol 18:75–89
pubmed: 26913498
doi: 10.1111/mpp.12384
Wendte JM, Miller MA, Lambourn DM, Magargal SL, Jessup DA, Grigg ME (2010) Self-mating in the definitive host potentiates clonal outbreaks of the apicomplexan parasites Sarcocystis neurona and Toxoplasma gondii. PLOS Genet 6:e1001261
pubmed: 21203443
pmcid: 3009688
doi: 10.1371/journal.pgen.1001261
Wilson MA, Makova KD (2009) Genomic analyses of sex chromosome evolution. Annu Rev Genom Hum G 10:333–354
doi: 10.1146/annurev-genom-082908-150105
Wingfield BD, Ambler JM, Coetzee MPA, de Beer ZW, Duong TA, Joubert F et al. (2016) Draft genome sequences of Armillaria fuscipes, Ceratocystiopsis minuta, Ceratocystis adiposa, Endoconidiophora laricicola, E. polonica and Penicillium freii DAOMC 242723. IMA Fungus 7:217–227
pubmed: 27433447
pmcid: 4941685
doi: 10.5598/imafungus.2016.07.01.11
Wu YH, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLOS Genet 4:e1000212
pubmed: 18846212
pmcid: 2556103
doi: 10.1371/journal.pgen.1000212
Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R et al. (2018) RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci USA 115:3108–3113
pubmed: 29507212
doi: 10.1073/pnas.1713725115