Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1.
Alleles
Bacterial Typing Techniques
Cholera
/ epidemiology
Cholera Toxin
/ chemistry
Disease Outbreaks
Escherichia coli
/ genetics
Gene Expression Regulation, Bacterial
Genes, Bacterial
/ genetics
Haiti
/ epidemiology
Humans
RNA, Bacterial
Serogroup
Vibrio cholerae O1
/ genetics
Virulence
/ genetics
Virulence Factors
/ genetics
Journal
PLoS neglected tropical diseases
ISSN: 1935-2735
Titre abrégé: PLoS Negl Trop Dis
Pays: United States
ID NLM: 101291488
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
02
07
2019
accepted:
10
02
2020
entrez:
3
4
2020
pubmed:
3
4
2020
medline:
7
7
2020
Statut:
epublish
Résumé
Cholera continues to be an important public health concern in developing countries where proper hygiene and sanitation are compromised. This severe diarrheal disease is caused by the Gram-negative pathogen Vibrio cholerae belonging to serogroups O1 and O139. Cholera toxin (CT) is the prime virulence factor and is directly responsible for the disease manifestation. The ctxB gene encodes cholera toxin B subunit (CTB) whereas the A subunit (CTA) is the product of ctxA gene. Enzymatic action of CT depends on binding of B pentamers to the lipid-based receptor ganglioside GM1. In recent years, emergence of V. cholerae Haitian variant strains with ctxB7 allele and their rapid spread throughout the globe has been linked to various cholera outbreaks in Africa and Asia. These strains produce classical type (WT) CTB except for an additional mutation in the signal sequence region where an asparagine (N) residue replaces a histidine (H) at the 20th amino acid position (H20N) of CTB precursor (pre-CTB). Here we report that Haitian variant V. cholerae O1 strains isolated in Kolkata produced higher amount of CT compared to contemporary O1 El Tor variant strains under in vitro virulence inducing conditions. We observed that the ctxB7 allele, itself plays a pivotal role in higher CT production. Based on our in silico analysis, we hypothesized that higher accumulation of toxin subunits from ctxB7 allele might be attributed to the structural alteration at the CTB signal peptide region of pre-H20N CTB. Overall, this study provides plausible explanation regarding the hypertoxigenic phenotype of the Haitian variant strains which have spread globally, possibly through positive selection for increased pathogenic traits.
Identifiants
pubmed: 32236098
doi: 10.1371/journal.pntd.0008128
pii: PNTD-D-19-01121
pmc: PMC7112172
doi:
Substances chimiques
RNA, Bacterial
0
Virulence Factors
0
Cholera Toxin
9012-63-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0008128Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Methods Mol Biol. 2010;619:1-20
pubmed: 20419401
Proc Natl Acad Sci U S A. 1984 Dec;81(24):7752-6
pubmed: 6393126
J Bacteriol. 2011 Feb;193(4):979-88
pubmed: 21169492
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7991-5
pubmed: 8755590
J Clin Microbiol. 2012 May;50(5):1733-6
pubmed: 22357499
Eur J Biochem. 2000 Mar;267(6):1626-33
pubmed: 10712592
Front Microbiol. 2019 Feb 05;10:111
pubmed: 30804907
Emerg Infect Dis. 2011 Nov;17(11):2113-21
pubmed: 22099115
J Biomol Struct Dyn. 2015;33(7):1460-73
pubmed: 25204745
Proc Natl Acad Sci U S A. 1990 Nov;87(21):8227-31
pubmed: 2146683
mSphere. 2016 Sep 21;1(5):
pubmed: 27668288
J Bacteriol. 2010 Sep;192(17):4300-10
pubmed: 20601467
Biochemistry. 1974 Jan 15;13(2):222-45
pubmed: 4358940
N Engl J Med. 2011 Jan 6;364(1):33-42
pubmed: 21142692
J Clin Microbiol. 2013 Mar;51(3):1040-5
pubmed: 23325815
Curr Top Microbiol Immunol. 2014;379:17-47
pubmed: 24710767
mBio. 2011 Sep 01;2(4):e00157-11
pubmed: 21862630
Infect Immun. 1995 Oct;63(10):4091-8
pubmed: 7558324
Infect Immun. 2016 Aug 19;84(9):2473-81
pubmed: 27297393
PLoS Negl Trop Dis. 2013;7(2):e2049
pubmed: 23459673
BMC Bioinformatics. 2008 Jan 23;9:40
pubmed: 18215316
J Bacteriol. 2012 Jul;194(13):3377-85
pubmed: 22544275
J Mol Biol. 1982 May 5;157(1):105-32
pubmed: 7108955
Microbiol Rev. 1993 Mar;57(1):50-108
pubmed: 8096622
Mol Gen Genet. 1998 May;258(4):326-33
pubmed: 9648736
J Biol Chem. 1994 May 6;269(18):13609-13
pubmed: 8175796
Mol Microbiol. 2002 Jan;43(1):119-34
pubmed: 11849541
Nature. 1984 Apr 12-18;308(5960):655-8
pubmed: 6324005
J Infect. 2008 Sep;57(3):280-1
pubmed: 18657323
Mol Microbiol. 2018 Feb;107(3):330-343
pubmed: 29152799
PLoS One. 2014 Nov 21;9(11):e112973
pubmed: 25415339
Microbiol Mol Biol Rev. 1999 Mar;63(1):161-73
pubmed: 10066835
Nature. 2011 Aug 24;477(7365):462-5
pubmed: 21866102
Clin Microbiol Rev. 1995 Jan;8(1):48-86
pubmed: 7704895
Emerg Infect Dis. 2008 Jun;14(6):987-8
pubmed: 18507925
J Biol Chem. 1985 Nov 25;260(27):14832-7
pubmed: 3902840
Proc Natl Acad Sci U S A. 1982 May;79(9):2976-80
pubmed: 7045877
Mol Microbiol. 1994 Sep;13(5):765-73
pubmed: 7815936
Infect Immun. 1994 Aug;62(8):3051-7
pubmed: 8039872
J Bioenerg Biomembr. 1990 Jun;22(3):233-69
pubmed: 2202719
J Bacteriol. 2012 Oct;194(19):5255-63
pubmed: 22821976
Sci Rep. 2016 Dec 19;6:39454
pubmed: 27991578
J Clin Microbiol. 2011 Nov;49(11):3739-49
pubmed: 21880975
J Clin Microbiol. 1985 Sep;22(3):405-8
pubmed: 2995438
Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5
pubmed: 2648393
Nat Protoc. 2012 Jul 19;7(8):1511-22
pubmed: 22814390
Infect Immun. 2007 Dec;75(12):5542-9
pubmed: 17875629
J Mol Biol. 1983 Jun 25;167(2):391-409
pubmed: 6345794
FEBS Lett. 1979 Jul 15;103(2):308-13
pubmed: 467675
J Bacteriol. 1995 Jul;177(14):4121-30
pubmed: 7608087