Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.
Acetylglucosamine
/ metabolism
Animals
Cell Line, Tumor
Cell Membrane
/ metabolism
Desmin
/ genetics
Glial Fibrillary Acidic Protein
/ genetics
Humans
Intermediate Filament Proteins
/ genetics
Intermediate Filaments
/ metabolism
Kinetics
Lipid Bilayers
/ metabolism
Mice
Microscopy, Atomic Force
Peripherins
/ genetics
Protein Binding
Protein Domains
Protein Structure, Tertiary
Rats
Recombinant Proteins
Surface Plasmon Resonance
Time Factors
Vimentin
/ genetics
GFAP
atomic force microscopy
cell membrane
desmin
peripherin
surface plasmon resonance
type III intermediate filament protein
vimentin
Journal
Genes to cells : devoted to molecular & cellular mechanisms
ISSN: 1365-2443
Titre abrégé: Genes Cells
Pays: England
ID NLM: 9607379
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
27
09
2019
revised:
19
03
2020
accepted:
19
03
2020
pubmed:
4
4
2020
medline:
21
10
2020
entrez:
4
4
2020
Statut:
ppublish
Résumé
Vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin, classified as the type III intermediate filament family, maintain the integrity and architecture of various cell types. Recently, we reported their cell surface expression and binding to multivalent N-acetylglucosamine-conjugated polymers. Furthermore, the presence of vimentin on the surface of various cell types including malignant tumor cells and fibroblasts has been demonstrated. Type III intermediate filament proteins are traditionally considered intracellular proteins and do not possess signal peptides for cell membrane recruitment. Therefore, the mechanism of their transport to the cell surface is unclear. In the current study, we aimed to elucidate this mechanism by focusing on the relationship between their multimeric structure and lipid bilayer affinity. Blue native polyacrylamide gel electrophoresis demonstrated that cell surface-expressed type III intermediate filament proteins formed a multimeric mostly including 4-12-mers but not filamentous structure. Moreover, surface plasmon resonance analysis revealed that the multimeric structure of these recombinant proteins had high affinity to lipid bilayers, whereas their filament-like large multimeric structure did not. Our results suggest that type III intermediate filaments are incorporated into the cell membrane through alteration from a filamentous to a multimeric structure.
Substances chimiques
Desmin
0
Glial Fibrillary Acidic Protein
0
Intermediate Filament Proteins
0
Lipid Bilayers
0
Peripherins
0
Recombinant Proteins
0
Vimentin
0
Acetylglucosamine
V956696549
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-426Subventions
Organisme : Japan Society for the Promotion of Science
ID : KAKENHI JP15K01313
Organisme : Japan Society for the Promotion of Science
ID : KAKENHI JP19K12804
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : the Cooperative Research program of "Network Joi
Informations de copyright
© 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Références
Ando, S., Tanabe, K., Gonda, Y., Sato, C., & Inagaki, M. (1989). Domain- and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry, 28, 2974-2979. https://doi.org/10.1021/bi00433a035
Andreev, O. A., Karabadzhak, A. G., Weerakkody, D., Andreev, G. O., Engelman, D. M., & Reshetnyak, Y. K. (2010). pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proceedings of the National Academy of Sciences, 107(9), 4081-4086. https://doi.org/10.1073/pnas.0914330107
Cai, Z., Jitkaew, S., Zhao, J., Chiang, H. C., Choksi, S., Liu, J., … Liu, Z. G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 16, 55-65. https://doi.org/10.1038/ncb2883
Chou, Y. H., Bischoff, J. R., Beach, D., & Goldman, R. D. (1990). Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell, 62, 1063-1071. https://doi.org/10.1016/0092-8674(90)90384-Q
Der Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R., … Quinlan, R. A. (2006). The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. American Journal of Human Genetics, 79, 197-213. https://doi.org/10.1086/504411
Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Gonclaves, A., Bruggeman, I., … Vandenabeele, P. (2014). MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports, 7, 971-981. https://doi.org/10.1016/j.celrep.2014.04.026
Duprey, P., & Paulin, D. (1995). What can be learned from intermediate filament gene regulation in the mouse embryo. International Journal of Developmental Biology, 39, 443-457.
Eriksson, J. E., He, T., Trejo-Skalli, A. V., Härmälä-Braskén, A. S., Hellman, J., Chou, Y. H., & Goldman, R. D. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of Cell Science, 117, 919-932. https://doi.org/10.1242/jcs.00906
Galluzzi, L., Kepp, O., & Kroemer, G. (2014). MLKL regulates necrotic plasma membrane permeabilization. Cell Research, 24, 139-140. https://doi.org/10.1038/cr.2014.8
Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakurai, M., Amano, M., … Inagaki, M. (1998). Phosphorylation of vimentin by rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. Journal of Biological Chemistry, 273, 11728-11736. https://doi.org/10.1074/jbc.273.19.11728
Goto, H., Yasui, Y., Kawajiri, A., Nigg, E. A., Terada, Y., Tatsuka, M., … Inagaki, M. (2003). Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. Journal of Biological Chemistry, 278, 8526-8530. https://doi.org/10.1074/jbc.M210892200
Hall, K., & Aguilar, M. I. (2010). Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides. Methods in Molecular Biology, 627, 213-223. https://doi.org/10.1007/978-1-60761-670-2_14
Helfand, B. T., Mendez, M. G., Murthy, S. N., Shumaker, D. K., Grin, B., Mahammad, S., … Goldman, R. D. (2011). Vimentin organization modulates the formation of lamellipodia. Molecular Biology of the Cell, 22, 1274-1289. https://doi.org/10.1091/mbc.E10-08-0699
Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V., & Aebi, U. (2007). Intermediate filaments: From cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 8, 562-573. https://doi.org/10.1038/nrm2197
Hou, X., Small, D. H., & Aguilar, M. I. (2010). Surface plasmon resonance spectroscopy in determination of the interactions between amyloid beta proteins (Aβ) and lipid membranes. Methods in Molecular Biology, 627, 225-235.
Inada, H., Goto, H., Tanabe, K., Nishi, Y., Kaibuchi, K., & Inagaki, M. (1998). Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochemical and Biophysical Research Communications, 253, 21-25. https://doi.org/10.1006/bbrc.1998.9732
Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., & Sato, C. (1987). Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature, 328, 649-652. https://doi.org/10.1038/328649a0
Ise, H., Goto, M., Komura, K., & Akaike, T. (2012). Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin. Glycobiology, 22, 788-805. https://doi.org/10.1093/glycob/cws052
Ise, H., Kobayashi, S., Goto, M., Sato, T., Kawakubo, M., Takahashi, M., … Akaike, T. (2010). Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology, 20, 843-864. https://doi.org/10.1093/glycob/cwq039
Ise, H., Matsunaga, K., Shinohara, M., & Sakai, Y. (2019). Improved isolation of mesenchymal stem cells based on interactions between N-Acetylglucosamine-bearing polymers and cell-surface vimentin. Stem Cells International, 2019, 4341286. https://doi.org/10.1155/2019/4341286
Ise, H., Yamasaki, S., Sueyoshi, K., & Miura, Y. (2017). Elucidation of GlcNAc-binding properties of type III intermediate filament proteins, using GlcNAc-bearing polymers. Genes to Cells, 22, 900-917. https://doi.org/10.1111/gtc.12535
Ivaska, J., Pallari, H. M., Nevo, J., & Eriksson, J. E. (2007). Novel functions of vimentin in cell adhesion, migration, and signaling. Experimental Cell Research, 313, 2050-2062. https://doi.org/10.1016/j.yexcr.2007.03.040
Ivaska, J., Vuoriluoto, K., Huovinen, T., Izawa, I., Inagaki, M., & Parke, P. J. (2005). PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO Journal, 24, 3834-3845. https://doi.org/10.1038/sj.emboj.7600847
Izawa, I., & Inagaki, M. (2006). Regulatory mechanisms and functions of intermediate filaments: A study using site- and phosphorylation state-specific antibodies. Cancer Science, 97, 167-174. https://doi.org/10.1111/j.1349-7006.2006.00161.x
Kim, S. J., Ise, H., Goto, M., & Akaike, T. (2012). Interactions of vimentin- or desmin-expressing liver cells with N-acetylglucosamine-bearing polymers. Biomaterials, 33, 2154-2164.
Kirmse, R., Portet, S., Mücke, N., Aebi, U., Herrmann, H., & Langowski, J. (2007). A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. Journal of Biological Chemistry, 282, 18563-18572. https://doi.org/10.1074/jbc.M701063200
Kiss, B., Karsai, A., & Kellermayer, M. S. (2006). Nanomechanical properties of desmin intermediate filaments. Journal of Structural Biology, 155, 327-339. https://doi.org/10.1016/j.jsb.2006.03.020
Komura, K., Ise, H., & Akaike, T. (2012). Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology, 22, 1741-1759. https://doi.org/10.1093/glycob/cws118
Konishi, H., Namikawa, K., Shikata, K., Kobatake, Y., Tachibana, T., & Kiyama, H. (2007). Identification of peripherin as a Akt substrate in neurons. Journal of Biological Chemistry, 282, 23491-23499. https://doi.org/10.1074/jbc.M611703200
Kosako, H., Amano, M., Yanagida, M., Tanabe, K., Nishi, Y., Kaibuchi, K., & Inagaki, M. (1997). Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and rho-associated kinase. Journal of Biological Chemistry, 272, 10333-10336. https://doi.org/10.1074/jbc.272.16.10333
Lindsay, C. R., Le Moulec, S., Billiot, F., Loriot, Y., Ngo-Camus, M., Vielh, P., & Farace, F. (2016). Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer. BMC Cancer, 16, 168. https://doi.org/10.1186/s12885-016-2192-6
Lowery, J., Kuczmarski, E. R., Herrmann, H., & Goldman, R. D. (2015). Intermediate filaments play a pivotal role in regulating cell architecture and function. Journal of Biological Chemistry, 290, 17145-17153. https://doi.org/10.1074/jbc.R115.640359
Nam, T. S., Kim, J. H., Chang, C. H., Yoon, W., Jung, Y. S., Kang, S. Y., … Kim, M. K. (2015). Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. European Journal of Human Genetics, 23, 72-78. https://doi.org/10.1038/ejhg.2014.68
Nishimura, N., & Balch, W. E. (1997). A di-acidic signal required for selective export from the endoplasmic reticulum. Science, 277, 556-558. https://doi.org/10.1126/science.277.5325.556
Osborn, M. (1983). Intermediate filaments as histologic markers: An overview. The Journal of Investigative Dermatology, 81, 104-107. https://doi.org/10.1111/1523-1747.ep12540811
Satelli, A., Brownlee, Z., Mitra, A., Meng, Q. H., & Li, S. (2015). Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clinical Chemistry, 61, 259-266. https://doi.org/10.1373/clinchem.2014.228122
Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences, 68, 3033-3046. https://doi.org/10.1007/s00018-011-0735-1
Steinmetz, N. F., Cho, C. F., Ablack, A., Lewis, J. D., & Manchester, M. (2011). Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond), 6, 351-364. https://doi.org/10.2217/nnm.10.136
Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., … Wang, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-227. https://doi.org/10.1016/j.cell.2011.11.031
Terwilliger, T. C., & Eisenberg, D. (1982). The structure of melittin. II. Interpretation of the structure. Journal of Biological Chemistry, 257, 6016-6022.
Yang, C. Y., Chang, P. W., Hsu, W. H., Chang, H. C., Chen, C. L., Lai, C. C., … Chen, H. C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38, 4075-4094. https://doi.org/10.1038/s41388-019-0705-x
Yang, J., Zou, L., Yang, Y., Yuan, J., Hu, Z., Liu, H., … Rao, X. (2016). Superficial vimentin mediates DENV-2 infection of vascular endothelial cells. Scientific Reports, 6(1), 38372. https://doi.org/10.1038/srep38372
Yu, Y. T. C., Chien, S. C., Chen, I. Y., Lai, C. T., Tsay, Y. G., Chang, S. C., & Chang, M. F. (2016). Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 23, 14. https://doi.org/10.1186/s12929-016-0234-7
Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., … Lev, D. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene., 30, 457-470.