Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates.
Animals
Anti-Bacterial Agents
/ pharmacology
Bacterial Proteins
/ metabolism
Biofilms
/ drug effects
Biological Therapy
/ methods
Carbapenem-Resistant Enterobacteriaceae
/ drug effects
Carbapenems
/ pharmacology
Disease Models, Animal
Female
Humans
Klebsiella Infections
/ microbiology
Klebsiella pneumoniae
/ drug effects
Mice
Phylogeny
Siphoviridae
/ genetics
beta-Lactamases
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 04 2020
03 04 2020
Historique:
received:
07
07
2019
accepted:
17
03
2020
entrez:
5
4
2020
pubmed:
5
4
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The increasing incidence of carbapenemase-producing K. pneumoniae strains (CP-Kps) in the last decade has become a serious global healthcare problem. Therapeutic options for the treatment of emerging hospital clones have drastically narrowed and therefore novel approaches must be considered. Here we have isolated and characterized a lytic bacteriophage, named vB_KpnS_Kp13, that was effective against all Verona integron-encoded metallo-β-lactamase (VIM) producing K. pneumoniae isolates originating from hospital samples (urine, blood, sputum and faeces), belonging to the ST15 clonal lineage and expressing the K24 capsule. Morphological characterization of vB_KpnS_Kp13 showed that the newly identified phage belonged to the Siphoviridae family, and phylogenetic analysis showed that it is part of a distinct clade of the Tunavirinae subfamily. Functional analysis revealed that vB_KpnS_Kp13 had relatively short latent period times (18 minutes) compared to other K. pneumoniae bacteriophages and could degrade biofilm by more than 50% and 70% in 24 and 48 hours respectively. Complete in vivo rescue potential of the new phage was revealed in an intraperitoneal mouse model where phages were administered intraperitoneally 10 minutes after bacterial challenge. Our findings could potentially be used to develop specific anti-CP-Kps bacteriophage-based therapeutic strategies against major clonal lineages and serotypes.
Identifiants
pubmed: 32246126
doi: 10.1038/s41598-020-62691-8
pii: 10.1038/s41598-020-62691-8
pmc: PMC7125228
doi:
Substances chimiques
Anti-Bacterial Agents
0
Bacterial Proteins
0
Carbapenems
0
beta-Lactamases
EC 3.5.2.6
carbapenemase
EC 3.5.2.6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5891Références
Vuotto, C., Longo, F., Balice, M. P., Donelli, G. & Varaldo, P. E. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3, 743–758, https://doi.org/10.3390/pathogens3030743 (2014).
doi: 10.3390/pathogens3030743
pubmed: 25438022
pmcid: 4243439
Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews 11, 589–603, https://doi.org/10.1128/CMR.11.4.589 (1998).
doi: 10.1128/CMR.11.4.589
pubmed: 9767057
pmcid: 88898
Bradford, P. A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 14, 933–951, https://doi.org/10.1128/CMR.14.4.933-951.2001 (2001).
doi: 10.1128/CMR.14.4.933-951.2001
pubmed: 11585791
pmcid: 89009
Damjanova, I. et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type β-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new ‘MRSAs’? Journal of Antimicrobial Chemotherapy 62, 978–985, https://doi.org/10.1093/jac/dkn287 (2008).
doi: 10.1093/jac/dkn287
pubmed: 18667450
Ewers, C. et al. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. Journal of Antimicrobial Chemotherapy 69, 2676–2680, https://doi.org/10.1093/jac/dku217 (2014).
doi: 10.1093/jac/dku217
pubmed: 24974381
Lee, C.-R. et al. Global dissemination of carbapenamase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Frontiers in Microbiology 7, 895, https://doi.org/10.3389/fmicb.2016.00895 (2016).
doi: 10.3389/fmicb.2016.00895
pubmed: 27379038
pmcid: 4904035
Esteban-Cantos, A. et al. The carbapenemase-producing Klebsiella pneumoniae population is distinct and more clonal than the carbapenem-susceptible population. Antimicrobial Agents and Chemotherapy 61, e02520–16, https://doi.org/10.1128/AAC.02520-16 (2017).
doi: 10.1128/AAC.02520-16
pubmed: 28137818
pmcid: 5365714
de Man, T. J. B. et al. Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016. American Society for. Microbiology 9, e00440–18, https://doi.org/10.1128/mBio.00440-18 (2018).
doi: 10.1128/mBio.00440-18
Andrade, L. N. et al. Virulence genes, capsular and plasmid types of multidrug-resistant CTX-M (-2, -8, -15) and KPC-2-producing Klebsiella pneumoniae isolates from four major hospitals in Brasil. Diagnostic Microbiology and Infectious Disease 91, 164–168, https://doi.org/10.1016/j.diagmicrobio.2018.01.007 (2018).
doi: 10.1016/j.diagmicrobio.2018.01.007
pubmed: 29459053
Ma, Y. et al. Microbiological characterization of Klebsiella pneumoniae isolates causing bloodstream infections from five tertiary hospitals in Bejing, China. Journal of Global Antimicrobial Resistance 12, 162–166, https://doi.org/10.1016/j.jgar.2017.10.002 (2018).
doi: 10.1016/j.jgar.2017.10.002
pubmed: 29032055
Hu, L. et al. Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagnostic Microbiology and Infectious Disease 75, 373–376, https://doi.org/10.1016/j.diagmicrobio.2013.01.006 (2013).
doi: 10.1016/j.diagmicrobio.2013.01.006
pubmed: 23453788
Yan, J. J., Wang, M. C., Zheng, P. X., Tsai, L. H. & Wu, J. J. Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumoniae in Taiwan. New Microbe and New Infections 5, 1–4, https://doi.org/10.1016/j.nmni.2015.01.002 (2015).
doi: 10.1016/j.nmni.2015.01.002
Rodrigues, C., Machado, E., Ramos, H., Peixe, L. & Novais, Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: A successful story of international colnes (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIκ). International Journal of Medical Microbiology 304, 1100–1108, https://doi.org/10.1016/j.ijmm.2014.08.003 (2014).
doi: 10.1016/j.ijmm.2014.08.003
pubmed: 25190354
Vublik, D. et al. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiology &. Infection 145, 595–599, https://doi.org/10.1017/S0950268816002442 (2017).
doi: 10.1017/S0950268816002442
Matheeussen, V. et al. Emergence of colistin resistance during treatment of recurrent pneumonia caused by carbapenemase producing Klebsiella pneumoniae. Diagnostic Microbiology and Infectious Disease 94, 407–409, https://doi.org/10.1016/j.diagmicrobio.2019.02.014 (2019).
doi: 10.1016/j.diagmicrobio.2019.02.014
pubmed: 30890297
Markovska, R. et al. Dissemintaion of successful international clone ST15 and clonal complex 17 among Bulgarian CTX-M-15 producing K. pneumoniae isolates. Diagnostic Microbiology and Infectious Disease 89, 310–313, https://doi.org/10.1016/j.diagmicrobio.2017.08.012 (2017).
doi: 10.1016/j.diagmicrobio.2017.08.012
pubmed: 28988698
Brisse, S. et al. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. Journal of Clinical Microbiology 51, 4073–4078, https://doi.org/10.1128/JCM.01924-13 (2013).
doi: 10.1128/JCM.01924-13
pubmed: 24088853
pmcid: 3838100
Zhou, K. et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Scientific Reports 6, 20840, https://doi.org/10.1038/srep20840 (2016).
doi: 10.1038/srep20840
pubmed: 26864946
pmcid: 4749987
Withey, S., Cartmell, E., Avery, L. M. & Stephenson, T. Bacteriophages – potential for application in wastewater treatment process. Science of the Total Environment 339, 1–18, https://doi.org/10.1016/j.scitotenv.2004.09.021 (2005).
doi: 10.1016/j.scitotenv.2004.09.021
pubmed: 15740754
Golkar, Z., Bagasra, O. & Pace, D. G. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. The Journal of Infection in Developing Countries 8, 129–136, https://doi.org/10.3855/jidc.3573 (2014).
doi: 10.3855/jidc.3573
pubmed: 24518621
Tabassum, R. et al. Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae. Scientific Reports 8, 17904, https://doi.org/10.1038/s41598-018-36229-y (2018).
doi: 10.1038/s41598-018-36229-y
pubmed: 30559386
pmcid: 6297243
Kubler-Kielb, J. et al. The capsular polysaccharide and lipopolysaccharide structures of two carbapenem resistant Klebsiella pneumoniae outbreak isolates. Carbohydrate Research 369, 6–9, https://doi.org/10.1016/j.carres.2012.12.018 (2013).
doi: 10.1016/j.carres.2012.12.018
pubmed: 23360863
Bellich, B. et al. Structure of the capsular polysaccharide of the KPC-2-producing Klbesiella pneumoniae strain KK207-2 and assignment of the glycosyltransferases functions. International Journal of Biological Macromolecules 130, 536–544, https://doi.org/10.1016/j.ijbiomac.2019.02.128 (2019).
doi: 10.1016/j.ijbiomac.2019.02.128
pubmed: 30802520
Pan, Y.-J. et al. Identification of three podoviruses infecting Klebsiella enconing capsule depolymerases that digest specific capsular types. Microbial. Biotechnology 12, 472–486, https://doi.org/10.1111/1751-7915.13370 (2019).
doi: 10.1111/1751-7915.13370
Pan, Y.-J. et al. Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrobial Agents and Chemotherapy 59, 1038–1047, https://doi.org/10.1128/AAC.03560-14 (2015).
doi: 10.1128/AAC.03560-14
pubmed: 25451047
pmcid: 4335867
Ackermann, H. W. Frequency of morphological phage descriptions in the year 2000. Archives of Virology 146, 843–857, https://doi.org/10.1007/s007050170120 (2001).
doi: 10.1007/s007050170120
pubmed: 11448025
Vuotto, C. et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. Journal of Applied Microbiology 123, 1003–1018, https://doi.org/10.1111/jam.13533 (2017).
doi: 10.1111/jam.13533
pubmed: 28731269
Bull, J. J., Vegge, C. S., Schmerer, M., Chaudhry, W. N. & Levin, B. R. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS ONE 9, e94690, https://doi.org/10.1371/journal.pone.0094690 (2014).
doi: 10.1371/journal.pone.0094690
pubmed: 24743264
pmcid: 3990542
Seed, K. D. Battling phages: How bacteria defend against viral attack. PLoS Pathogens 11, e1004847, https://doi.org/10.1371/journal.ppat.1004847 (2015).
doi: 10.1371/journal.ppat.1004847
pubmed: 26066799
pmcid: 4465916
Schroll, D., Rogers, S., Adhya, S. & Merril, C. R. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. Journal of Virology 75, 2509–2515, https://doi.org/10.1128/JVI.75.6.2509-2515.2001 (2001).
doi: 10.1128/JVI.75.6.2509-2515.2001
Drulis-Kawa, Z. et al. Isolation and characterization of KP34 – a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Applied Genetics and Molecular Biotechnology 90, 1333–1345, https://doi.org/10.1007/s00253-011-3149-y (2011).
doi: 10.1007/s00253-011-3149-y
Cao, F., et al Evaluation of the efficacy of a becteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Hindawi Article ID 752930, https://doi.org/10.1155/2015/752930 (2015).
Thurow, H., Niemann, H., Rudolph, C. & Stirm, S. Host capsule depolymerase activity of bacteriophage particles active on Klebsiella K20 and K24 strains. Virology 58, 306–309, https://doi.org/10.1016/0042-6822(74)90166-4 (1974).
doi: 10.1016/0042-6822(74)90166-4
pubmed: 4821701
Hsieh, P.-F., Lin, H.-H., Lin, T.-L., Chen, Y.-Y. & Wang, J.-T. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Scientific Reports 7, 4624, https://doi.org/10.1038/s41598-017-04644-2 (2017).
doi: 10.1038/s41598-017-04644-2
pubmed: 28676686
pmcid: 5496888
D’Andrea, M. M. et al. φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Scientific Reports 7, 2614, https://doi.org/10.1038/s41598-017-02788-9 (2017).
doi: 10.1038/s41598-017-02788-9
pubmed: 28572684
pmcid: 5453958
Jamal, M., Hussain, T., Das, C. R. & Andleeb, S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. Journal in Medical Microbiology 64, 454–462, https://doi.org/10.1099/jmm.0.000040 (2015).
doi: 10.1099/jmm.0.000040
pubmed: 25681321
Seema, K., Harjai, K. & Chhibber, S. Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. Journal of Microbiology and Biotechnology 20, 935–941, https://doi.org/10.4014/jmb.0909.09010 (2010).
doi: 10.4014/jmb.0909.09010
Chhibber, S., Kaur, S. & Kumari, S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. Journal of Medical Microbiology 57, 1508–1513, https://doi.org/10.1099/jmm.0.2008/002873-0 (2008).
doi: 10.1099/jmm.0.2008/002873-0
pubmed: 19018021
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual. No. Ed. 2 pp.xxxviii + 1546 pp., University of Texas South Western Medical Center, USA (ISBN 0879693096) (1989).
King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J. Virus taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, California, USA (ISBN 978-0-12-384684-6) (2011).
Mirzaei, M. K. & Nilsson, A. S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10, e0118557, https://doi.org/10.1371/journal.pone.0118557 (2015).
doi: 10.1371/journal.pone.0118557
Adams, M. H. Bacteriophage, Inter-science Publishers. New York, USA, pp.450–456 (Record Number: 19602204111) (1959).
Di Lallo, G. et al. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. Journal of Basic Microbiology 54, 1210–1221, https://doi.org/10.1002/jobm.201300951 (2014).
Dömötör, D. et al. Comparative analysis of two bacteriophages of Xantomonas arboricola pv. juglandis. Infection, Genetics and Evolution 43, 371–377, https://doi.org/10.1016/j.meegid.2016.06.011 (2016).
doi: 10.1016/j.meegid.2016.06.011
pubmed: 27275846
Pettit, R. K. et al. Microplate alamar blue assay for Staplylococcus epidermidis biofilm susceptibility testing. Antimicrobial Agents and Chemotherapy 49, 2612–2617, https://doi.org/10.1128/AAC.49.7.2612-2617.2005 (2005).
doi: 10.1128/AAC.49.7.2612-2617.2005
pubmed: 15980327
pmcid: 1168683
O’Toole, G. A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Molecular Microbiology 28, 449–461, https://doi.org/10.1046/j.1365-2958.1998.00797.x (1998).
doi: 10.1046/j.1365-2958.1998.00797.x
pubmed: 9632250
Gowrishankar, S., Mosioma, N. D. & Pandian, S. K. Coral-assosciated bacteria as a promising antibiofilm agent against methicillin-resistant and –susceptible Staphylococcus aureus biofilms. Evidence-Based Complementary and Alternative Medicine Article ID 862374, https://doi.org/10.1155/2012/862374 (2012).
Liao, Y.-C., Lin, H.-H., Sabharwal, A., Haase, E. M. & Scannapieco, F. A. MyPro: A seamless pipeline for automated prokaryotic genome assembly and annotation. Journal of Microbiological Methods 113, 72–74, https://doi.org/10.1016/j.mimet.2015.04.006 (2015).
doi: 10.1016/j.mimet.2015.04.006
pubmed: 25911337
pmcid: 4828917
Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42, D206–D214, https://doi.org/10.1093/nar/gkt1226 (2014).
doi: 10.1093/nar/gkt1226
pubmed: 24293654
Lukashin, A. V. & Borodovsky, M. GeneMark.hmm: New solutions for gene finding. Nucleic Acids Research 265, 1107–1115, https://doi.org/10.1093/nar/26.4.1107 (1998).
doi: 10.1093/nar/26.4.1107
Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33, 3396–3404, https://doi.org/10.1093/bioinformatics/btx440 (2017).
doi: 10.1093/bioinformatics/btx440
pubmed: 29036289
pmcid: 5860169
Rambaut, A. FigTree 1.4.3 - a graphical viewer of phylogenetic trees and a program for producing publication-ready figures. Molecular evolution, phylogenetics and epidemiology, http://tree.bio.ed.ac.uk/software/figtree (2006).
Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: A potential therapeutic agent. Current Microbiology 59, 274–281, https://doi.org/10.1007/s00284-009-9430-y (2009).
doi: 10.1007/s00284-009-9430-y
pubmed: 19484297