Cryo-EM structure of the RNA-rich plant mitochondrial ribosome.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
04
10
2019
accepted:
02
03
2020
pubmed:
7
4
2020
medline:
5
2
2021
entrez:
7
4
2020
Statut:
ppublish
Résumé
The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs
Identifiants
pubmed: 32251374
doi: 10.1038/s41477-020-0631-5
pii: 10.1038/s41477-020-0631-5
doi:
Substances chimiques
Plant Proteins
0
RNA, Plant
0
RNA, Ribosomal
0
Ribosomal Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
377-383Références
Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).
doi: 10.1038/s41556-018-0124-1
Gray, M. W. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc. Natl Acad. Sci. USA 112, 10133–10138 (2015).
doi: 10.1073/pnas.1421379112
Bieri, P., Greber, B. J. & Ban, N. High-resolution structures of mitochondrial ribosomes and their functional implications. Curr. Opin. Struct. Biol. 49, 44–53 (2018).
doi: 10.1016/j.sbi.2017.12.009
Boerema, A. P. et al. Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor. Nat. Plants 4, 212–217 (2018).
doi: 10.1038/s41477-018-0129-6
Bieri, P., Leibundgut, M., Saurer, M., Boehringer, D. & Ban, N. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J. 36, 475–486 (2017).
doi: 10.15252/embj.201695959
Waltz, F. et al. Small is big in Arabidopsis mitochondrial ribosome. Nat. Plants 5, 106–117 (2019).
doi: 10.1038/s41477-018-0339-y
Desai, N., Brown, A., Amunts, A. & Ramakrishnan, V. The structure of the yeast mitochondrial ribosome. Science 355, 528–531 (2017).
doi: 10.1126/science.aal2415
Ramrath, D. J. F. et al. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362, eaau7735 (2018).
doi: 10.1126/science.aau7735
Brown, A. et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24, 866–869 (2017).
doi: 10.1038/nsmb.3464
Greber, B. J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).
doi: 10.1126/science.aaa3872
Unseld, M., Marienfeld, J. R., Brandt, P. & Brennicke, A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15, 57–61 (1997).
doi: 10.1038/ng0197-57
Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e42166 (2018).
doi: 10.7554/eLife.36861
Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).
doi: 10.1126/science.aaa1193
Leontiadou, F., Triantafillidou, D. & Choli-Papadopoulou, T. On the characterization of the putative S20-thx operon of Thermus thermophilus. Biol. Chem. 382, 1001–1006 (2001).
doi: 10.1515/BC.2001.126
Kummer, E. et al. Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 560, 263–267 (2018).
doi: 10.1038/s41586-018-0373-y
Zoschke, R. & Bock, R. Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell 30, 745–770 (2018).
doi: 10.1105/tpc.18.00016
Sloan, D. B. et al. Cytonuclear integration and co-evolution. Nat. Rev. Genet. 19, 635–648 (2018).
doi: 10.1038/s41576-018-0035-9
Englmeier, R., Pfeffer, S. & Förster, F. Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25, 1574–1581 (2017).
doi: 10.1016/j.str.2017.07.011
Pfeffer, S., Woellhaf, M. W., Herrmann, J. M. & Förster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6, 6019 (2015).
doi: 10.1038/ncomms7019
Barkan, A. et al. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet. 8, 4–11 (2012).
doi: 10.1371/journal.pgen.1002910
Hammani, K. et al. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 100, 141–150 (2014).
doi: 10.1016/j.biochi.2013.08.031
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
doi: 10.1016/j.jsb.2015.11.003
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
doi: 10.7554/eLife.42166
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).
doi: 10.1038/nmeth.2727
Arenz, S. et al. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proc. Natl Acad. Sci. USA 113, 7527–7532 (2016).
doi: 10.1073/pnas.1604790113
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
doi: 10.1107/S0907444910007493
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
doi: 10.1002/pro.3235
Ott, M., Amunts, A. & Brown, A. Organization and regulation of mitochondrial protein synthesis. Annu. Rev. Biochem. 85, 77–101 (2016).
doi: 10.1146/annurev-biochem-060815-014334
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new hhpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).
doi: 10.1016/j.jmb.2017.12.007