Micrografting device for testing systemic signaling in Arabidopsis.

Arabidopsis Micro-Electro Mechanical System grafting iron transport long-distance signaling micrografting micrografting chip systemic signaling technical advance

Journal

The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397

Informations de publication

Date de publication:
07 2020
Historique:
received: 21 12 2019
revised: 09 03 2020
accepted: 24 03 2020
pubmed: 15 4 2020
medline: 6 3 2021
entrez: 15 4 2020
Statut: ppublish

Résumé

Grafting techniques have been applied in studies of systemic, long-distance signaling in several model plants. Seedling grafting in Arabidopsis, known as micrografting, enables investigation of the molecular mechanisms of systemic signaling between shoots and roots. However, conventional micrografting requires a high level of skill, limiting its use. Thus, an easier user-friendly method is needed. Here, we developed a silicone microscaled device, the micrografting chip, to obviate the need for training and to generate less stressed and more uniformly grafted seedlings. The chip has tandemly arrayed units, each of which consists of a seed pocket for seed germination and a micro-path with pairs of pillars for hypocotyl holding. Grafting, including seed germination, micrografting manipulation and establishment of tissue reunion, is performed on the chip. Using the micrografting chip, we evaluated the effect of temperature and the carbon source on grafting, and showed that a temperature of 27°C and a sucrose concentration of 0.5% were optimal. We also used the chip to investigate the mechanism of systemic signaling of iron status using a quadruple nicotianamine synthase (nas) mutant. The constitutive iron-deficiency response in the nas mutant because of iron accumulation in shoots was significantly rescued by grafting of wild-type shoots or roots, suggesting that shoot- and root-ward translocation of nicotianamine-iron complexes and/or nicotianamine is essential for iron mobilization. Thus, our micrografting chip will promote studies of long-distance signaling in plants.

Identifiants

pubmed: 32285535
doi: 10.1111/tpj.14768
doi:

Substances chimiques

Silicones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

918-929

Informations de copyright

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.

Références

Corbesier, L., Vincent, C., Jang, S. et al. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030-1033.
DiDonato, R.J., Roberts, L.A., Sanderson, T., Eisley, R.B. and Walker, E.L. (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. 39, 403-414.
Druege, U., Franken, P. and Hajirezaei, M.R. (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 7, 381.
Durrett, U.P., Gassmann, W. and Rogers, E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144, 197-205.
Froelich, D.R., Mullendore, D.L., Jensen, K.H., Ross-Elliott, T.J., Anstead, J.A., Thompson, G.A., Pélissier, H.C. and Knoblauch, M. (2011) Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell, 23, 4428-4445.
Furuta, K.M., Yadav, S.R., Lehesranta, S. et al. (2014) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science, 345, 933-937.
Gayomba, S.R., Zhai, Z., Jung, H.I. and Vatamaniuk, O.K. (2015) Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front. Plant Sci. 6, 716.
Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P. and Estelle, M. (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl Acad. Sci. USA, 95, 7197-7202.
Grossmann, G., Guo, W.J., Ehrhardt, D.W., Frommer, W.B., Sit, R.V., Quake, S.R. and Meier, M. (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell, 23, 4234-4240.
Hänsch, R. and Mendel, R.R. (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266.
Huang, N.-C. and Yu, T.-S. (2015) A pin-fasten grafting method provides a non-sterile and highly efficient method for grafting Arabidopsis at diverse developmental stages. Plant Methods, 11(1), 1-11.
Iwase, A., Mitsuda, N., Koyama, T. et al. (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21, 508-514.
Jeong, J., Merkovich, A., Clyne, M. and Connolly, E.L. (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr. Opin. Plant Biol. 39, 106-113.
Jin, P., Jiang, K. and Sun, N. (2003) Microfabrication of ultra-thick SU-8 photoresist for microengines. Proc. SPIE 4979, Micromachining and Microfabrication Process Technology VIII.
Klatte, M., Schuler, M., Wirtz, M., Fink-Straube, C., Hell, R. and Bauer, P. (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 150, 257-271.
Ko, D. and Helariutta, Y. (2017) Shoot-root communication in flowering plants. Curr. Biol. 27, R973-R978.
Kumar, R.K., Chu, H.H., Abundis, C., Vasques, K., Rodriguez, D.C., Chia, J.C., Huang, R., Vatamaniuk, O.K. and Walker, E.L. (2017) Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiol. 175, 1254-1268.
Lee, J.M. and Oda, M. (2003) Grafting of herbaceous vegetable and ornamental crops. In Horticultural Reviews, Vol. 28 (Janick, J., ed.). Oxford: John Wiley, pp. 61-124. ISBN 9780471215424.
Liao, C.-Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T. and Weijers, D. (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods, 12, 207-210.
Ling, H.-Q., Koch, G., Baumlein, H. and Ganal, M.W. (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc. Natl Acad. Sci. USA, 96, 7098-7103.
Liu, L. and Chen, X. (2018) Intercellular and systemic trafficking of RNAs in plants. Nat. Plants, 4, 869-878.
Maas, F.M., Van De Wetering, D.A., Van Beusichem, M.L. and Bienfait, H.F. (1988) Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiol. 87, 167-171.
Maathuis, F.J. (2009) Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250-258.
Marsch-Martínez, N., Franken, J., Gonzalez-Aguilera, K.L., de Folter, S., Angenent, G. and Alvarez-Buylla, E.R. (2013) An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods, 9, 14.
Matsuoka, K., Sugawara, E., Aoki, R., Takuma, K., Terao-Morita, M., Satoh, S. and Asahina, M. (2016) Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol. 57, 2620-2631.
Melnyk, C.W., Schuster, C., Leyser, O. and Meyerowitz, E.M. (2015) A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol. 25, 1306-1318.
Melnyk, C.W., Gabel, A., Hardcastle, T.J., Robinson, S., Miyashima, S., Grosse, I. and Meyerowitz, E.M. (2018) Transcriptome dynamics at Arabidopsis graft junctions reveal an inter tissue recognition mechanism that activates vascular regeneration. Proc. Natl Acad. Sci. USA, 115, E2447-E2456.
Mizuta, Y., Kurihara, D. and Higashiyama, T. (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma, 252, 1231-1240.
Molnar, A., Melnyk, C.W., Bassett, A., Hardcastle, T.J., Dunn, R. and Baulcombe, D.C. (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science, 328, 872-875.
Notaguchi, M., Abe, M., Kimura, T. et al. (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49, 1645-1658.
Notaguchi, M., Daimon, Y., Abe, M. and Araki, T. (2009) Adaptation of a seedling micro-grafting technique to the study of long-distance signaling in flowering of Arabidopsis thaliana. J. Plant Res. 122, 201-214.
Okamoto, S., Tabata, R. and Matsubayashi, Y. (2016) Long-distance peptide signaling essential for nutrient homeostasis in plants. Curr. Opin. Plant Biol. 34, 35-40.
Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T. and Sakakibara, H. (2017) Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants, 3, 17 112.
Ottenschläger, I., Wolff, P., Wolverton, C., Bhalerao, R.P., Sandberg, G., Ishikawa, H., Evans, M. and Palme, K. (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA, 100, 2987-2991.
Pant, B.D., Buhtz, A., Kehr, J. and Scheible, W.-R. (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J. 53, 731-738.
Park, J., Kurihara, D., Higashiyama, T. and Arata, H. (2014) Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sens. Actuators B, 191, 178-185.
Rellán-Álvarez, R., Giner-Martínez-Sierra, J., Orduna, J., Orera, I., Rodríguez-Castrillón, J.A., García-Alonso, J.I., Abadía, J. and Álvarez-Fernández, A. (2010) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91-102.
Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E. and Brkljacic, J. (2014) Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. Methods Mol. Biol. 1062, 3-25.
Sakakibara, H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431-449.
Scholz, G., Schlesier, G. and Seifert, K. (1985) Effect of nicotianamine on iron uptake by the tomato mutant ‘chloronerva’. Physiol. Plant, 98, 99-104.
Schuler, M., Rellan-Alvarez, Z., Fink-Straube, C., Abadia, J. and Bauer, P. (2012) Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell, 24, 2380-2400.
Stacey, M.G., Patel, A., Mcclain, W.E., Mathieu, M., Remley, M., Rogers, E.E., Gassmann, W., Blevins, D.G. and Stacey, G. (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 146, 589-601.
Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H. and Matsubayashi, Y. (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 346, 343-346.
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 556, 235-238.
Tsutsui, H. and Notaguchi, M. (2017) The use of grafting to study systemic signaling in plants. Plant Cell Physiol. 58, 1291-1301.
Turnbull, C.G.N., Booker, J.P. and Leyser, H.M.O. (2002) Micrografting techniques for testing long-distance signaling in Arabidopsis. Plant J. 32, 255-262.
Vert, G.A., Briat, J. and Curie, C. (2003) Dual regulation of the arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 132, 796-804.
Wang, L. and Ruan, Y.-L. (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4, 163.
von Wirén, N., Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., Leigh, R.A. and Hider, R.C. (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol. 119, 1107-1114.
Yanagisawa, N., Sugimoto, N., Arata, H., Higashiyama, T. and Sato, Y. (2017) Capability of tip-growing plant cells to penetrate into extremely narrow gaps. Sci. Rep. 7, 1403.
Yin, H., Yan, B., Sun, J. et al. (2012) Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J. Exp. Bot. 63, 4219-4232.
Zhai, Z., Gayomba, S.R., Jung, H.I. et al. (2014) OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell, 26, 2249-2264.

Auteurs

Hiroki Tsutsui (H)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Naoki Yanagisawa (N)

Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan.

Yaichi Kawakatsu (Y)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Shuka Ikematsu (S)

Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Yu Sawai (Y)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Ryo Tabata (R)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Hideyuki Arata (H)

Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Tetsuya Higashiyama (T)

Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan.

Michitaka Notaguchi (M)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan.
Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH