Quantifying the incremental value of deep learning: Application to lung nodule detection.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
20
12
2019
accepted:
24
03
2020
entrez:
15
4
2020
pubmed:
15
4
2020
medline:
17
7
2020
Statut:
epublish
Résumé
We present a case study for implementing a machine learning algorithm with an incremental value framework in the domain of lung cancer research. Machine learning methods have often been shown to be competitive with prediction models in some domains; however, implementation of these methods is in early development. Often these methods are only directly compared to existing methods; here we present a framework for assessing the value of a machine learning model by assessing the incremental value. We developed a machine learning model to identify and classify lung nodules and assessed the incremental value added to existing risk prediction models. Multiple external datasets were used for validation. We found that our image model, trained on a dataset from The Cancer Imaging Archive (TCIA), improves upon existing models that are restricted to patient characteristics, but it was inconclusive about whether it improves on models that consider nodule features. Another interesting finding is the variable performance on different datasets, suggesting population generalization with machine learning models may be more challenging than is often considered.
Identifiants
pubmed: 32287288
doi: 10.1371/journal.pone.0231468
pii: PONE-D-19-35334
pmc: PMC7156089
doi:
Types de publication
Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0231468Subventions
Organisme : NCI NIH HHS
ID : P50 CA058187
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA129102
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
N Engl J Med. 2011 Aug 4;365(5):395-409
pubmed: 21714641
Ann Intern Med. 2014 Mar 4;160(5):330-8
pubmed: 24378917
J Digit Imaging. 2013 Dec;26(6):1045-57
pubmed: 23884657
JAMA. 2019 Aug 8;:
pubmed: 31393527
J Am Coll Radiol. 2015 Mar;12(3):273-6
pubmed: 25176499
Arch Intern Med. 1997 Apr 28;157(8):849-55
pubmed: 9129544
Am J Respir Crit Care Med. 2008 Nov 1;178(9):956-61
pubmed: 18635890
Eur J Epidemiol. 2011 Apr;26(4):261-4
pubmed: 21431839
Ann Intern Med. 2015 Jan 6;162(1):W1-73
pubmed: 25560730
Chest. 2007 Feb;131(2):383-8
pubmed: 17296637
Sensors (Basel). 2019 Aug 28;19(17):
pubmed: 31466261
N Engl J Med. 2013 Sep 5;369(10):910-9
pubmed: 24004118
Diagn Progn Res. 2018 Jul 11;2:14
pubmed: 31093563
Biom J. 2012 Jan;54(1):127-42
pubmed: 22095849
J Thorac Oncol. 2017 Oct;12(10):1512-1523
pubmed: 28634123
Biomed Eng Online. 2014 Apr 08;13:41
pubmed: 24713067
Epidemiology. 2010 Jan;21(1):128-38
pubmed: 20010215