Molecular profiling of driver events in metastatic uveal melanoma.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
20 04 2020
Historique:
received: 02 07 2019
accepted: 19 03 2020
entrez: 22 4 2020
pubmed: 22 4 2020
medline: 5 8 2020
Statut: epublish

Résumé

Metastatic uveal melanoma is less well understood than its primary counterpart, has a distinct biology compared to skin melanoma, and lacks effective treatments. Here we genomically profile metastatic tumors and infiltrating lymphocytes. BAP1 alterations are overrepresented and found in 29/32 of cases. Reintroducing a functional BAP1 allele into a deficient patient-derived cell line, reveals a broad shift towards a transcriptomic subtype previously associated with better prognosis of the primary disease. One outlier tumor has a high mutational burden associated with UV-damage. CDKN2A deletions also occur, which are rarely present in primaries. A focused knockdown screen is used to investigate overexpressed genes associated withcopy number gains. Tumor-infiltrating lymphocytes are in several cases found tumor-reactive, but expression of the immune checkpoint receptors TIM-3, TIGIT and LAG3 is also abundant. This study represents the largest whole-genome analysis of uveal melanoma to date, and presents an updated view of the metastatic disease.

Identifiants

pubmed: 32313009
doi: 10.1038/s41467-020-15606-0
pii: 10.1038/s41467-020-15606-0
pmc: PMC7171146
doi:

Substances chimiques

BAP1 protein, human 0
CDKN2A protein, human 0
Cyclin-Dependent Kinase Inhibitor p16 0
Tumor Suppressor Proteins 0
Ubiquitin Thiolesterase EC 3.4.19.12

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1894

Références

Singh, A. D., Turell, M. E. & Topham, A. K. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118, 1881–1885 (2011).
pubmed: 21704381 doi: 10.1016/j.ophtha.2011.01.040
Rantala, E. S., Hernberg, M. & Kivelä, T. T. Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Res. 29, 561–568 (2019).
pubmed: 30664106 pmcid: 6887637 doi: 10.1097/CMR.0000000000000575
Yang, J., Manson, D. K., Marr, B. P. & Carvajal, R. D. Treatment of uveal melanoma: where are we now? Ther. Adv. Med. Oncol. 10, 1758834018757175 (2018).
pubmed: 29497459 pmcid: 5824910
Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220 (2017).
Moore, A. R. et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 48, 675–680 (2016).
pubmed: 27089179 pmcid: 5032652 doi: 10.1038/ng.3549
Johansson, P. et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7, 4624–4631 (2016).
pubmed: 26683228 doi: 10.18632/oncotarget.6614
Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009).
pubmed: 19078957 doi: 10.1038/nature07586
Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).
pubmed: 21083380 pmcid: 3107972 doi: 10.1056/NEJMoa1000584
Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).
pubmed: 23793026 pmcid: 4307600 doi: 10.1038/ng.2674
Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).
pubmed: 21051595 pmcid: 3087380 doi: 10.1126/science.1194472
Onken, M. D., Worley, L. A., Ehlers, J. P. & Harbour, J. W. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 64, 7205–7209 (2004).
pubmed: 15492234 pmcid: 5407684 doi: 10.1158/0008-5472.CAN-04-1750
Corrêa, Z. M. & Augsburger, J. J. Independent prognostic significance of gene expression profile class and largest basal diameter of posterior uveal melanomas. Am. J. Ophthalmol. 162, 20–27 (2016). e1.
pubmed: 26596399 doi: 10.1016/j.ajo.2015.11.019
Field, M. G. et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin. Cancer Res. 22, 1234–1242 (2016).
pubmed: 26933176 pmcid: 4780366 doi: 10.1158/1078-0432.CCR-15-2071
Royer-Bertrand, B. et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am. J. Hum. Genet. 99, 1190–1198 (2016).
pubmed: 27745836 pmcid: 5097942 doi: 10.1016/j.ajhg.2016.09.008
Olofsson, R. et al. Isolated hepatic perfusion as a treatment for uveal melanoma liver metastases (the SCANDIUM trial): study protocol for a randomized controlled trial. Trials 15, 317 (2014).
pubmed: 25106493 pmcid: 4138407 doi: 10.1186/1745-6215-15-317
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Wadt, K. et al. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res. 25, 815–818 (2012).
pubmed: 22889334 doi: 10.1111/pcmr.12006
Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281 (2018). e3.
pubmed: 29617666 pmcid: 6055527 doi: 10.1016/j.celrep.2018.03.052
Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
doi: 10.1038/nature11412
Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).
pubmed: 22150006 pmcid: 3685413 doi: 10.1056/NEJMoa1109016
Raphael, B. J. et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203 (2017). e13.
doi: 10.1016/j.ccell.2017.07.007
Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).
pubmed: 21057493 pmcid: 3003755 doi: 10.1038/nature09586
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).
pubmed: 19372391 pmcid: 2715015 doi: 10.1126/science.1170116
Yu, H. et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol. Cell Biol. 30, 5071–5085 (2010).
pubmed: 20805357 pmcid: 2953049 doi: 10.1128/MCB.00396-10
Guénel, P. et al. Occupational risk factors, ultraviolet radiation, and ocular melanoma: a case-control study in France. Cancer Causes Control 12, 451–459 (2001).
pubmed: 11545460 doi: 10.1023/A:1011271420974
Holly, E. A., Aston, D. A., Ahn, D. K. & Smith, A. H. Intraocular melanoma linked to occupations and chemical exposures. Epidemiology 7, 55–61 (1996).
pubmed: 8664402 doi: 10.1097/00001648-199601000-00010
Kaliki, S. & Shields, C. L. Uveal melanoma: relatively rare but deadly cancer. Eye 31, 241–257 (2017).
pubmed: 27911450 doi: 10.1038/eye.2016.275
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
pubmed: 26551669 pmcid: 4783858 doi: 10.1038/ng.3441
Damato, B., Dopierala, J. A. & Coupland, S. E. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin. Cancer Res. 16, 6083–6092 (2010).
pubmed: 20975103 doi: 10.1158/1078-0432.CCR-10-2076
Ewens, K. G. et al. Genomic profile of 320 uveal melanoma cases: chromosome 8p-loss and metastatic outcome. Investig. Ophthalmol. Vis. Sci. 54, 5721–5729 (2013).
doi: 10.1167/iovs.13-12195
Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).
pubmed: 28467829 doi: 10.1038/nature22071
Shain, A. H. et al. The genetic evolution of metastatic uveal melanoma. Nat. Genet. 51, 1123–1130 (2019).
pubmed: 31253977 pmcid: 6632071 doi: 10.1038/s41588-019-0440-9
Onken, M. D. et al. Functional gene expression analysis uncovers phenotypic switch in aggressive uveal melanomas. Cancer Res. 66, 4602–4609 (2006).
pubmed: 16651410 pmcid: 5407689 doi: 10.1158/0008-5472.CAN-05-4196
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).
pubmed: 9390557 doi: 10.1016/S0092-8674(00)80434-1
Igea, A. & Nebreda, A. R. The stress kinase p38α as a target for cancer therapy. Cancer Res. 75, 3997–4002 (2015).
pubmed: 26377941 doi: 10.1158/0008-5472.CAN-15-0173
Feng, X. et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the Hippo pathway through FAK. Cancer Cell 35, 457–472 (2019).
pubmed: 30773340 pmcid: 6737937 doi: 10.1016/j.ccell.2019.01.009
Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell Biol. 134, 793–799 (1996).
pubmed: 8707856 doi: 10.1083/jcb.134.3.793
Alanko, J. et al. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17, 1412–1421 (2015).
pubmed: 26436690 pmcid: 4890650 doi: 10.1038/ncb3250
Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).
pubmed: 30202049 pmcid: 6170713 doi: 10.1038/s41556-018-0178-0
Onken, M. D. et al. Collaborative ocular oncology group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119, 1596–1603 (2012).
pubmed: 22521086 pmcid: 3404209 doi: 10.1016/j.ophtha.2012.02.017
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 16199517 doi: 10.1073/pnas.0506580102
Simoni, Y. et al. Bystander CD8+T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).
pubmed: 29769722 doi: 10.1038/s41586-018-0130-2
Jespersen, H. et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat. Commun. 8, 707 (2017).
Forsberg, E. M. V. et al. HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy–resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res. 79, 899–904 (2019).
pubmed: 30622115 doi: 10.1158/0008-5472.CAN-18-3158
Field, M. G. et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat. Commun. 9, 116 (2018).
pubmed: 29317634 pmcid: 5760704 doi: 10.1038/s41467-017-02428-w
Amirouchene-Angelozzi, N. et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 8, 1508–1520 (2014).
pubmed: 24994677 pmcid: 5528590 doi: 10.1016/j.molonc.2014.06.004
Matatall, K. A. et al. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer 13, 1–12 (2013).
doi: 10.1186/1471-2407-13-371
Durante, M. A. et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 11, 496 (2020).
pubmed: 31980621 pmcid: 6981133 doi: 10.1038/s41467-019-14256-1
Bagge, R. O. et al. Mutational signature and transcriptomic classification analyses as the decisive diagnostic tools for a cancer of unknown primary. JCO Precis. Oncol. 2, 1–25 (2018).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 19451168 doi: 10.1093/bioinformatics/btp324
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 2928508 pmcid: 2928508 doi: 10.1101/gr.107524.110
Ahdesmäki, M. J., Gray, S. R., Johnson, J. H. & Lai, Z. Disambiguate: an open-source application for disambiguating two species in next generation sequencing data from grafted samples. F1000Research 5, 2741 (2016).
pubmed: 27990269 doi: 10.12688/f1000research.10082.1
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 pmcid: 23104886 doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 pmcid: 25260700 doi: 10.1093/bioinformatics/btu638
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018).
pubmed: 29695279 pmcid: 5922316 doi: 10.1186/s13073-018-0539-0
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 25751142 doi: 10.1038/nmeth.3317
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Maaten, L. Van Der & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).
pubmed: 26372948 pmcid: 4747795 doi: 10.1038/nbt.3344
Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).
pubmed: 25143287 pmcid: 4441069 doi: 10.1093/bioinformatics/btu548
Jurtz, V. et al. NetMHCpan-4.0: Improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).
pubmed: 28978689 doi: 10.4049/jimmunol.1700893
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
doi: 10.1038/nbt.3519 pubmed: 27043002 pmcid: 27043002
Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).
Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-widecopy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).
pubmed: 27100738 pmcid: 4839673 doi: 10.1371/journal.pcbi.1004873
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).
pubmed: 26704973 doi: 10.1093/nar/gkv1507
Zheng, X., Zhang, N., Wu, H.-J. & Wu, H. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies. Genome Biol. 18, 17 (2017).
pubmed: 28122605 pmcid: 5267453 doi: 10.1186/s13059-016-1143-5
Lin, H. & Zelterman, D. Modeling survival data: extending the cox model. Technometrics 44, 85–86 (2002).
doi: 10.1198/tech.2002.s656
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Keshava Prasad, T. S. et al. Human Protein Reference Database–2009 update. Nucleic Acids Res. 37, D767–D772 (2009).
pubmed: 18988627 doi: 10.1093/nar/gkn892
Mora, A. & Donaldson, I. M. iRefR: an R package to manipulate the iRefIndex consolidated protein interaction database. BMC Bioinformatics. 12, 455 (2011).
pubmed: 22115179 pmcid: 3282787 doi: 10.1186/1471-2105-12-455
Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at https://www.biorxiv.org/content/10.1101/060012v2 . (2019).
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods https://doi.org/10.1038/nmeth.1322 (2009).
doi: 10.1038/nmeth.1322 pubmed: 19377485
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 1–12 (2017).
doi: 10.1038/s41467-016-0009-6
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell rna sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).
pubmed: 30954475 pmcid: 6853612 doi: 10.1016/j.cels.2019.03.003
Guevara, M. R., Hartmann, D. & Mendoza, M. diverse: an R package to measure diversity in complex systems. R J. 8, 2 (2016).
Kosman, E. & Leonard, K. J. Conceptual analysis of methods applied to assessment of diversity within and distance between populations with asexual or mixed mode of reproduction. New Phytol. 174, 683–696 (2007).
pubmed: 17447922 doi: 10.1111/j.1469-8137.2007.02031.x

Auteurs

Joakim Karlsson (J)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Lisa M Nilsson (LM)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Suman Mitra (S)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Samuel Alsén (S)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Ganesh Vilas Shelke (GV)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Vasu R Sah (VR)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Elin M V Forsberg (EMV)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Ulrika Stierner (U)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Charlotta All-Eriksson (C)

St. Erik Eye Hospital, Polhemsgatan 50, 11282, Stockholm, Sweden.

Berglind Einarsdottir (B)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Henrik Jespersen (H)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Lars Ny (L)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Per Lindnér (P)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Erik Larsson (E)

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.

Roger Olofsson Bagge (R)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden.

Jonas A Nilsson (JA)

Sahlgrenska Cancer Center, Departments of Surgery, Oncology or Transplantation Surgery, Institute of Clinical Sciences at University of Gothenburg and Sahlgrenska University Hospital, Box 425, 40530, Gothenburg, Sweden. jonas.a.nilsson@surgery.gu.se.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH