Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents.


Journal

Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360

Informations de publication

Date de publication:
14 09 2020
Historique:
received: 29 03 2020
revised: 20 04 2020
pubmed: 24 4 2020
medline: 8 7 2021
entrez: 24 4 2020
Statut: ppublish

Résumé

Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDH

Identifiants

pubmed: 32324965
doi: 10.1002/cbic.202000196
doi:

Substances chimiques

Benzyl Alcohols 0
Phenylbutyrates 0
ethyl 2-oxo-4-phenylbutyrate 0
Niacinamide 25X51I8RD4
methylphenyl carbinol E6O895DQ52
Glucose 1-Dehydrogenase EC 1.1.1.47

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2680-2688

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

 
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185-194;
G. W. Zheng, J. H. Xu, Curr. Opin. Biotechnol. 2011, 22, 784-792;
M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 12480-12496;
J. M. Woodley, Curr. Opin. Chem. Biol. 2013, 17, 310-316;
J. Lalonde, Curr. Opin. Biotechnol. 2016, 42, 152-158;
R. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801-838;
F. H. Arnold, Angew. Chem. Int. Ed. 2018, 57, 4143-4148;
Angew. Chem. 2018, 130, 4212-4218;
M. Hönig, P. Sondermann, N. J. Turner, E. M. Carreira, Angew. Chem. Int. Ed. 2017, 56, 8942-8973;
Angew. Chem. 2017, 129, 9068-9100;
C. A. Denard, H. Ren, H. Zhao, Curr. Opin. Chem. Biol. 2015, 25, 55-64;
S. Shoda, H. Uyama, J. Kadokawa, S. Kimura, S. Kobayashi, Chem. Rev. 2016, 116, 2307-2413.
 
J. Dong, E. Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S. Schmidt, Y. Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9238-9261;
Angew. Chem. 2018, 130, 9380-9404;
G. Grogan, Curr. Opin. Chem. Biol. 2018, 43, 15-22;
W. Hummel, Trends Biotechnol. 1999, 17, 487-492.
C. Rodriguez, I. Lavandera, V. Gotor, Curr. Org. Chem. 2012, 16, 2525-2541.
 
J. B. Jones, D. W. Sneddon, W. Higgins, A. J. Lewis, Chem. Commun. 1972, 856-857;
K. E. Taylor, J. B. Jones, J. Am. Chem. Soc. 1976, 98, 5689-5694;
T. Quinto, V. Köhler, T. Ward, Top. Catal. 2014, 57, 321-331;
F. Hollmann, I. W. C. E. Arends, K. Buehler, ChemCatChem 2010, 2, 762-782;
X. Wang, H. H. P. Yiu, ACS Catal. 2016, 6, 1880-1886.
 
F. Hollmann, A. Schmid, Biocatalysis 2004, 22, 63-88;
X. Wang, T. Saba, H. H. P. Yiu, R. F. Howe, J. A. Anderson, J. Shi, Chem 2017, 2, 621-654;
C. S. Morrison, W. B. Armiger, D. R. Dodds, J. S. Dordick, M. A. G. Koffas, Biotechnol. Adv. 2018, 36, 120-131.
 
K. Nakamura, R. Yamanaka, Chem. Commun. 2002, 1782-1783;
S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed. 2018, 57, 7958-7985;
Angew. Chem. 2018, 130, 8086-8116.
 
H. Zhao, W. A. van der Donk, Curr. Opin. Biotechnol. 2003, 14, 583-589;
W. A. van der Donk, H. Zhao, Curr. Opin. Biotechnol. 2003, 14, 421-426;
H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Green Chem. 2013, 15, 1773-1789.
C. Nowak, A. Pick, P. Lommes, V. Sieber, ACS Catal. 2017, 7, 5202-5208.
 
V. I. Tishkov, V. O. Popov, Biomol. Eng. 2006, 23, 89-110;
U. Kragl, D. VasicRacki, C. Wandrey, Bioprocess Eng. 1996, 14, 291-297;
F. F. Chen, S. C. Cosgrove, W. R. Birmingham, J. Mangas-Sanchez, J. Citoler, M. P. Thompson, G. W. Zheng, J. H. Xu, N. J. Turner, ACS Catal. 2019, 9, 11813-11818;
F. F. Chen, Y. H. Zhang, Z. J. Zhang, L. Liu, J. P. Wu, J. H. Xu, G. W. Zheng, J. Org. Chem. 2019, 84, 14987-14993.
A. Pennacchio, A. Giordano, M. Rossi, C. A. Raia, Eur. J. Org. Chem. 2011, 2011, 4361-4366.
T. W. Johannes, R. D. Woodyer, H. Zhao, Biotechnol. Bioeng. 2007, 96, 18-26.
 
M. Shao, X. Zhang, Z. Rao, M. Xu, T. Yang, H. Li, Z. Xu, S. Yang, Green Chem. 2016, 18, 1774-1784.
 
L. Lauterbach, O. Lenz, K. A. Vincent, FEBS J. 2013, 280, 3058-3068;
H. A. Reeve, P. A. Ash, H. Park, A. Huang, M. Posidias, C. Tomlinson, O. Lenz, K. A. Vincent, Biochem. J. 2017, 474, 215-230.
 
Y. Makino, J. Y. Ding, S. Negoro, I. Urabe, H. Okada, J. Ferment. Bioeng. 1989, 67, 374-379;
T. Mitamura, I. Urabe, H. Okada, Eur. J. Biochem. 1990, 186, 389-393;
T. Nagao, T. Mitamura, X. H. Wang, S. Negoro, T. Yomo, I. Urabe, H. Okada, J. Bacteriol. 1992, 174, 5013-5020;
Y. Fujita, R. Ramaley, E. Freese, J. Bacteriol. 1977, 132, 282-293;
H. J. Heilmann, H. J. Mägert, H. G. Gassen, FEBS J. 2010, 174, 485-490;
N. Vasantha, B. Uratani, R. F. Ramaley, E. Freese, Proc. Natl. Acad. Sci. USA 1983, 80, 785-789;
H. T. Ding, Y. Q. Du, D. F. Liu, Z. L. Li, X. J. Chen, Y. H. Zhao, Bioresour. Technol. 2011, 102, 1528-1536.
 
Y. Makino, S. Negoro, I. Urabe, H. Okada, J. Biol. Chem. 1989, 264, 6381-6385;
S. H. Baik, T. Ide, H. Yoshida, O. Kagami, S. Harayama, Appl. Microbiol. Biotechnol. 2003, 61, 329-335;
E. Vázquez-Figueroa, J. Chaparro-Riggers, A. S. Bommarius, ChemBioChem 2007, 8, 2295-2301;
S. H. Baik, F. Michel, N. Aghajari, R. Haser, S. Harayama, Appl. Environ. Microbiol. 2005, 71, 3285-3293.
 
G. W. Zheng, Y. Y. Liu, Q. Chen, L. Huang, H. L. Yu, W. Y. Lou, C. X. Li, Y. P. Bai, A. T. Li, J. H. Xu, ACS Catal. 2017, 7, 7174-7181;
S. K. Ma, J. Gruber, C. Davis, L. Newman, D. Gray, A. Wang, J. Grate, G. W. Huisman, R. A. Sheldon, Green Chem. 2010, 12, 81-86;
X. M. Gong, Z. Qin, F. L. Li, B. B. Zeng, G. W. Zheng, J. H. Xu, ACS Catal. 2019, 9, 147-153;
J. Y. Zhou, Y. Wang, G. C. Xu, L. Wu, R. Z. Han, U. Schwaneberg, Y. J. Rao, Y. L. Zhao, J. H. Zhou, Y. Ni, J. Am. Chem. Soc. 2018, 140, 12645-12654.
 
V. B. Urlacher, M. Girhard, Trends Biotechnol. 2019, 37, 882-897;
M. J. L. J. Fürst, A. Gran-Scheuch, F. S. Aalbers, M. W. Fraaije, ACS Catal. 2019, 9, 11207-11241;
K. Balke, A. Beier, U. T. Bornscheuer, Biotechnol. Adv. 2018, 36, 247-263;
F. Hollmann, K. Hofstetter, A. Schmid, Trends Biotechnol. 2006, 24, 163-171;
Y. Y. Liu, C. X. Li, J. H. Xu, G. W. Zheng, Appl. Environ. Microbiol. 2019, 85, e00239-19.
 
S. R. Derrington, N. J. Turner, S. P. France, J. Biotechnol. 2019, 304, 78-88;
M. Winkle, Curr. Opin. Chem. Biol. 2018, 43, 23-29;
G. Qu, J. Guo, D. Yang, Z. Sun, Green Chem. 2018, 20, 777-792.
 
J. Mangas-Sanchez, S. P. France, S. L. Montgomery, G. A. Aleku, H. Man, M. Sharma, J. I. Ramsden, G. Grogan, N. J. Turner, Curr. Opin. Chem. Biol. 2017, 37, 19-25;
J. M. Zhu, H. Q. Tan, L. Yang, Z. Dai, L. Zhu, H. M. Ma, Z. X. Deng, Z. H. Tian, X. D. Qu, ACS Catal. 2017, 7, 7003-7007;
H. Li, P. Tian, J. H. Xu, G. W. Zheng, Org. Lett. 2017, 19, 3151-3154;
H. Li, G. X. Zhang, L. M. Li, Y. S. Ou, M. Y. Wang, C. X. Li, G. W. Zheng, J. H. Xu, ChemCatChem 2016, 8, 724-727.
H. Akita, J. Hayashi, H. Sakuraba, T. Ohshima, Front. Microbiol. 2018, 9, 1760.
 
M. J. Abrahamson, E. Vázquez-Figueroa, N. B. Woodall, J. C. Moore, A. S. Bommarius, Angew. Chem. Int. Ed. 2012, 51, 3969-3972;
Angew. Chem. 2012, 124, 4036-4040;
O. Mayol, K. Bastard, L. Beloti, A. Frese, J. P. Turkenburg, J. L. Petit, A. Mariage, A. Debard, V. Pellouin, A. Perret, V. de Berardinis, A. Zaparucha, G. Grogan, C. Vergne-Vaxelaire, Nat. Catal. 2019, 2, 324-333.
G. A. Aleku, S. P. France, H. Man, J. Mangas-Sanchez, S. L. Montgomery, M. Sharma, F. Leipold, S. Hussain, G. Grogan, N. J. Turner, Nat. Chem. 2017, 9, 961-969.
K. Hoelsch, I. Sührer, M. Heusel, D. Weuster-Botz, Appl. Microbiol. Biotechnol. 2013, 97, 2473-2481.
A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, Nucleic Acids Res. 2018, 46, 296-303.
H. Ogino, T. Uchiho, N. Doukyu, M. Yasuda, K. Ishimi, H. Ishikawa, Biochem. Biophys. Res. Commun. 2007, 358, 1028-1033.
K. Yamamoto, G. Kurisu, M. Kusunoki, S. Tabata, I. Urabe, S. Osaki, J. Biochem. 2001, 129, 303-312.
Y. P. Shang, Q. Chen, X. D. Kong, Y. J. Zhang, J. H. Xu, Adv. Synth. Catal. 2017, 359, 426-431.
N. D. Shen, Y. Ni, H. M. Ma, L. J. Wang, C. X. Li, G. W. Zheng, J. Zhang, J. H. Xu, Org. Lett. 2012, 14, 1982-1985.
L. J. Wang, C. X. Li, Y. Ni, J. Zhang, X. Liu, J. H. Xu, Bioresour. Technol. 2011, 102, 7023-7028.
C. Wandrey, Chem. Rec. 2004, 4, 254-265.

Auteurs

Wen-Zhuo Qian (WZ)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Ling Ou (L)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Chun-Xiu Li (CX)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Jiang Pan (J)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Jian-He Xu (JH)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Qi Chen (Q)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Gao-Wei Zheng (GW)

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH