Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.
3T3 Cells
Animals
Cell Cycle Proteins
/ genetics
Chemotaxis
/ genetics
Cyclic AMP Response Element-Binding Protein
/ metabolism
Embryo, Mammalian
Female
GPI-Linked Proteins
/ genetics
Gene Expression Regulation, Developmental
Gene Knockout Techniques
Germ Cells
/ physiology
Hedgehog Proteins
/ metabolism
Immunoglobulin G
/ metabolism
Intravital Microscopy
Male
Mice
Mice, Transgenic
Organ Culture Techniques
Patched-1 Receptor
/ genetics
Patched-2 Receptor
/ metabolism
Receptors, Cell Surface
/ metabolism
Signal Transduction
/ genetics
Smoothened Receptor
/ metabolism
Time-Lapse Imaging
src-Family Kinases
/ metabolism
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 04 2020
24 04 2020
Historique:
received:
24
08
2019
accepted:
01
04
2020
entrez:
26
4
2020
pubmed:
26
4
2020
medline:
11
8
2020
Statut:
epublish
Résumé
Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche.
Identifiants
pubmed: 32332736
doi: 10.1038/s41467-020-15897-3
pii: 10.1038/s41467-020-15897-3
pmc: PMC7181751
doi:
Substances chimiques
Boc protein, mouse
0
Cell Cycle Proteins
0
Creb1 protein, mouse
0
Cyclic AMP Response Element-Binding Protein
0
GPI-Linked Proteins
0
Gas1 protein, mouse
0
Hedgehog Proteins
0
Immunoglobulin G
0
Patched-1 Receptor
0
Patched-2 Receptor
0
Ptch1 protein, mouse
0
Ptch2 protein, mouse
0
Receptors, Cell Surface
0
Shh protein, mouse
0
Smo protein, mouse
0
Smoothened Receptor
0
src-Family Kinases
EC 2.7.10.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
1994Subventions
Organisme : Medical Research Council
ID : MR/L020378/1
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Références
Gu, Y., Runyan, C., Shoemaker, A., Surani, A. & Wylie, C. Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 136, 1295–1303 (2009).
pubmed: 19279135
doi: 10.1242/dev.030619
pmcid: 19279135
Kunwar, P. S., Siekhaus, D. E. & Lehmann, R. In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265 (2006).
pubmed: 16774460
doi: 10.1146/annurev.cellbio.22.010305.103337
pmcid: 16774460
Richardson, B. E. & Lehmann, R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 11, 37–49 (2010).
pubmed: 20027186
pmcid: 4521894
doi: 10.1038/nrm2815
Runyan, C. et al. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133, 4861–4869 (2006).
pubmed: 17107997
doi: 10.1242/dev.02688
pmcid: 17107997
Nikolic, A., Volarevic, V., Armstrong, L., Lako, M. & Stojkovic, M. Primordial germ cells: current knowledge and perspectives. Stem Cells Int. 2016, 1741072 (2016).
pubmed: 26635880
doi: 10.1155/2016/1741072
pmcid: 26635880
Mich, J. K. et al. Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Dev. Biol. 328, 342–354 (2009).
pubmed: 19389352
pmcid: 2674121
doi: 10.1016/j.ydbio.2009.01.036
Renault, A. D. et al. Hedgehog does not guide migrating Drosophila germ cells. Dev. Biol. 328, 355–362 (2009).
pubmed: 19389345
pmcid: 2693393
doi: 10.1016/j.ydbio.2009.01.042
Deshpande, G., Godishala, A. & Schedl, P. Ggamma1, a downstream target for the hmgcr-isoprenoid biosynthetic pathway, is required for releasing the Hedgehog ligand and directing germ cell migration. PLoS Genet. 5, e1000333 (2009).
pubmed: 19132091
pmcid: 2607556
doi: 10.1371/journal.pgen.1000333
Bendel-Stenzel, M., Anderson, R., Heasman, J. & Wylie, C. The origin and migration of primordial germ cells in the mouse. Semin. Cell Dev. Biol. 9, 393–400 (1998).
pubmed: 9813186
doi: 10.1006/scdb.1998.0204
pmcid: 9813186
Godin, I., Wylie, C. & Heasman, J. Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 108, 357–363 (1990).
pubmed: 2351075
pmcid: 2351075
Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).
pubmed: 12679031
doi: 10.1016/S0092-8674(03)00199-5
pmcid: 12679031
Trousse, F., Marti, E., Gruss, P., Torres, M. & Bovolenta, P. Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog. Development 128, 3927–3936 (2001).
pubmed: 11641217
pmcid: 11641217
Kolpak, A., Zhang, J. & Bao, Z. Z. Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. J. Neurosci. 25, 3432–3441 (2005).
pubmed: 15800198
pmcid: 1564194
doi: 10.1523/JNEUROSCI.4938-04.2005
Bourikas, D. et al. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat. Neurosci. 8, 297–304 (2005).
pubmed: 15746914
doi: 10.1038/nn1396
pmcid: 15746914
Fleet, A. J. & Hamel, P. A. The protein-specific activities of the transmembrane modules of Ptch1 and Ptch2 are determined by their adjacent protein domains. J. Biol. Chem. 293, 16583–16595 (2018).
pubmed: 30166346
pmcid: 6204896
doi: 10.1074/jbc.RA118.004478
Carpenter, D. et al. Characterization of two patched receptors for the vertebrate hedgehog protein family. Proc. Natl Acad. Sci. USA 95, 13630–13634 (1998).
pubmed: 9811851
doi: 10.1073/pnas.95.23.13630
pmcid: 9811851
Mullor, J. L. & Guerrero, I. A gain-of-function mutant of patched dissects different responses to the hedgehog gradient. Dev. Biol. 228, 211–224 (2000).
pubmed: 11112325
doi: 10.1006/dbio.2000.9862
pmcid: 11112325
Holtz, A. M. et al. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 140, 3423–3434 (2013).
pubmed: 23900540
pmcid: 3737722
doi: 10.1242/dev.095083
Zhulyn, O. et al. A switch from low to high Shh activity regulates establishment of limb progenitors and signaling centers. Dev. Cell 29, 241–249 (2014).
pubmed: 24726283
doi: 10.1016/j.devcel.2014.03.002
pmcid: 24726283
Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).
pubmed: 8906787
doi: 10.1038/384129a0
pmcid: 8906787
Lee, Y. et al. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res. 66, 6964–6971 (2006).
pubmed: 16849540
doi: 10.1158/0008-5472.CAN-06-0505
pmcid: 16849540
Rahnama, F., Toftgard, R. & Zaphiropoulos, P. G. Distinct roles of PTCH2 splice variants in Hedgehog signalling. Biochem. J. 378, 325–334 (2004).
pubmed: 14613484
pmcid: 1223965
doi: 10.1042/bj20031200
Nieuwenhuis, E. et al. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol. Cell Biol. 26, 6609–6622 (2006).
pubmed: 16914743
pmcid: 1592833
doi: 10.1128/MCB.00295-06
Alfaro, A. C., Roberts, B., Kwong, L., Bijlsma, M. F. & Roelink, H. Ptch2 mediates the Shh response in Ptch1-/- cells. Development 141, 3331–3339 (2014).
pubmed: 25085974
pmcid: 4199129
doi: 10.1242/dev.110056
Bijlsma, M. F., Borensztajn, K. S., Roelink, H., Peppelenbosch, M. P. & Spek, C. A. Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal. 19, 2596–2604 (2007).
pubmed: 17884337
doi: 10.1016/j.cellsig.2007.08.011
pmcid: 17884337
Bijlsma, M. F., Damhofer, H. & Roelink, H. Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. Sci. Signal. 5, ra60 (2012).
pubmed: 22912493
pmcid: 4557959
doi: 10.1126/scisignal.2002798
Chinchilla, P., Xiao, L., Kazanietz, M. G. & Riobo, N. A. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9, 570–579 (2010).
pubmed: 20081366
doi: 10.4161/cc.9.3.10591
pmcid: 20081366
Yam, P. T., Langlois, S. D., Morin, S. & Charron, F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62, 349–362 (2009).
pubmed: 19447091
doi: 10.1016/j.neuron.2009.03.022
pmcid: 19447091
Belgacem, Y. H. & Borodinsky, L. N. Inversion of Sonic hedgehog action on its canonical pathway by electrical activity. Proc. Natl Acad. Sci. USA 112, 4140–4145 (2015).
pubmed: 25829542
doi: 10.1073/pnas.1419690112
pmcid: 25829542
Angot, E. et al. Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb. Stem Cells 26, 2311–2320 (2008).
pubmed: 18617686
doi: 10.1634/stemcells.2008-0297
pmcid: 18617686
Sanchez-Arrones, L., Cardozo, M., Nieto-Lopez, F. & Bovolenta, P. Cdon and Boc: Two transmembrane proteins implicated in cell-cell communication. Int. J. Biochem. Cell Biol. 44, 698–702 (2012).
pubmed: 22326621
doi: 10.1016/j.biocel.2012.01.019
pmcid: 22326621
Ruaro, M. E., Stebel, M., Vatta, P., Marzinotto, S. & Schneider, C. Analysis of the domain requirement in Gas1 growth suppressing activity. FEBS Lett. 481, 159–163 (2000).
pubmed: 10996316
doi: 10.1016/S0014-5793(00)02005-6
pmcid: 10996316
Izzi, L. et al. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20, 788–801 (2011).
pubmed: 21664577
pmcid: 3432913
doi: 10.1016/j.devcel.2011.04.017
McLellan, J. S. et al. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455, 979–983 (2008).
pubmed: 18794898
pmcid: 2679680
doi: 10.1038/nature07358
Fabre, P. J., Shimogori, T. & Charron, F. Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc. J. Neurosci. 30, 266–275 (2010).
pubmed: 20053908
pmcid: 6632541
doi: 10.1523/JNEUROSCI.3778-09.2010
Okada, A. et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444, 369–373 (2006).
pubmed: 17086203
doi: 10.1038/nature05246
pmcid: 17086203
Kang, J. S. et al. CDO: an oncogene-, serum-, and anchorage-regulated member of the Ig/fibronectin type III repeat family. J. Cell Biol. 138, 203–213 (1997).
pubmed: 9214393
pmcid: 2139939
doi: 10.1083/jcb.138.1.203
Kang, J. S., Mulieri, P. J., Hu, Y., Taliana, L. & Krauss, R. S. BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation. EMBO J. 21, 114–124 (2002).
pubmed: 11782431
pmcid: 125805
doi: 10.1093/emboj/21.1.114
Allen, B. L., Tenzen, T. & McMahon, A. P. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 21, 1244–1257 (2007).
pubmed: 17504941
pmcid: 1865495
doi: 10.1101/gad.1543607
Seppala, M. et al. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J. Clin. Investig. 117, 1575–1584 (2007).
pubmed: 17525797
doi: 10.1172/JCI32032
pmcid: 17525797
Lee, C. S., Buttitta, L. & Fan, C. M. Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc. Natl Acad. Sci. USA 98, 11347–11352 (2001).
pubmed: 11572986
doi: 10.1073/pnas.201418298
pmcid: 11572986
Mullor, J. L. & Altaba, A. Growth, hedgehog and the price of GAS. Bioessays 24, 22–26 (2002).
pubmed: 11782947
doi: 10.1002/bies.10052
pmcid: 11782947
Cobourne, M. T., Miletich, I. & Sharpe, P. T. Restriction of sonic hedgehog signalling during early tooth development. Development 131, 2875–2885 (2004).
pubmed: 15151988
doi: 10.1242/dev.01163
pmcid: 15151988
Biau, S., Jin, S. & Fan, C. M. Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling. Biol. Open 2, 144–155 (2013).
pubmed: 23429478
doi: 10.1242/bio.20123186
pmcid: 23429478
Jin, S., Martinelli, D. C., Zheng, X., Tessier-Lavigne, M. & Fan, C. M. Gas1 is a receptor for sonic hedgehog to repel enteric axons. Proc. Natl Acad. Sci. USA 112, E73–E80 (2015).
pubmed: 25535338
doi: 10.1073/pnas.1418629112
pmcid: 25535338
Martinelli, D. C. & Fan, C. M. Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev. 21, 1231–1243 (2007).
pubmed: 17504940
pmcid: 1865494
doi: 10.1101/gad.1546307
Bergeron, S. A., Tyurina, O. V., Miller, E., Bagas, A. & Karlstrom, R. O. Brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish. Development 138, 75–85 (2011).
pubmed: 21115611
pmcid: 2998166
doi: 10.1242/dev.057950
Chen, Y. et al. Hedgehog signaling promotes the proliferation and subsequent hair cell formation of progenitor cells in the neonatal mouse Cochlea. Front Mol. Neurosci. 10, 426 (2017).
pubmed: 29311816
pmcid: 5742997
doi: 10.3389/fnmol.2017.00426
Ho, W. L., Arastoo, M., Georgiou, I., Manning, D. R. & Riobo-Del Galdo, N. A. Activation of the Gi protein-RHOA axis by non-canonical Hedgehog signaling is independent of primary cilia. PLoS One 13, e0203170 (2018).
doi: 10.1371/journal.pone.0203170
Riobo, N. A., Saucy, B., Dilizio, C. & Manning, D. R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl Acad. Sci. USA 103, 12607–12612 (2006).
pubmed: 16885213
doi: 10.1073/pnas.0600880103
pmcid: 16885213
Barzi, M., Berenguer, J., Menendez, A., Alvarez-Rodriguez, R. & Pons, S. Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J. Cell Sci. 123, 62–69 (2010).
pubmed: 20016067
doi: 10.1242/jcs.060020
pmcid: 20016067
Delghandi, M. P., Johannessen, M., & Moens, U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal. 17, 1343–1351 (2005).
Dessaud, E. et al. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol. 8, e1000382 (2010).
pubmed: 20532235
pmcid: 2879390
doi: 10.1371/journal.pbio.1000382
Schueler-Furman, O., Glick, E., Segovia, J. & Linial, M. Is GAS1 a co-receptor for the GDNF family of ligands? Trends Pharmacol. Sci. 27, 72–77 (2006).
pubmed: 16406089
doi: 10.1016/j.tips.2005.12.004
pmcid: 16406089
Veenstra, V. L. et al. Patched-2 functions to limit Patched-1 deficient skin cancer growth. Cell Oncol. 41, 427–437 (2018).
doi: 10.1007/s13402-018-0381-9
Casillas, C. & Roelink, H. Gain-of-function Shh mutants activate Smo cell-autonomously independent of Ptch1/2 function. Mech. Dev. 153, 30–41 (2018).
pubmed: 30144507
pmcid: 6165682
doi: 10.1016/j.mod.2018.08.009
Bajestan, S. N. et al. Desert hedgehog-patched 2 expression in peripheral nerves during Wallerian degeneration and regeneration. J. Neurobiol. 66, 243–255 (2006).
pubmed: 16329124
doi: 10.1002/neu.20216
pmcid: 16329124
Molyneaux, K. A., Stallock, J., Schaible, K. & Wylie, C. Time-lapse analysis of living mouse germ cell migration. Dev. Biol. 240, 488–498 (2001).
pubmed: 11784078
doi: 10.1006/dbio.2001.0436
pmcid: 11784078
Yao, S., Lum, L. & Beachy, P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343–357 (2006).
pubmed: 16630821
doi: 10.1016/j.cell.2006.02.040
pmcid: 16630821