A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 04 2020
Historique:
received: 10 09 2019
accepted: 13 03 2020
entrez: 26 4 2020
pubmed: 26 4 2020
medline: 22 12 2020
Statut: epublish

Résumé

β-glucosidases catalyze the hydrolysis β-1,4, β-1,3 and β-1,6 glucosidic linkages from non-reducing end of short chain oligosaccharides, alkyl and aryl β-D-glucosides and disaccharides. They catalyze the rate-limiting reaction in the conversion of cellobiose to glucose in the saccharification of cellulose for second-generation ethanol production, and due to this important role the search for glucose tolerant enzymes is of biochemical and biotechnological importance. In this study we characterize a family 3 glycosyl hydrolase (GH3) β-glucosidase (Bgl) produced by Malbranchea pulchella (MpBgl3) grown on cellobiose as the sole carbon source. Kinetic characterization revealed that the MpBgl3 was highly tolerant to glucose, which is in contrast to many Bgls that are completely inhibited by glucose. A 3D model of MpBgl3 was generated by molecular modeling and used for the evaluation of structural differences with a Bgl3 that is inhibited by glucose. Taken together, our results provide new clues to understand the glucose tolerance in GH3 β-glucosidases.

Identifiants

pubmed: 32332833
doi: 10.1038/s41598-020-63972-y
pii: 10.1038/s41598-020-63972-y
pmc: PMC7181827
doi:

Substances chimiques

Cellobiose 16462-44-5
Carbon 7440-44-0
Cellulose 9004-34-6
beta-Glucosidase EC 3.2.1.21
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6998

Références

Bhatia, Y., Mishra, S. & Bisaria, V. S. Microbial beta-glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 22, 375–407, https://doi.org/10.1080/07388550290789568 (2002).
doi: 10.1080/07388550290789568 pubmed: 12487426
Bai, H. Z. et al. Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. Excli J 12, 528–540 (2013).
pubmed: 26609283 pmcid: 4657531
Sorensen, A., Lubeck, M., Lubeck, P. S. & Ahring, B. K. Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3, 612–631, https://doi.org/10.3390/biom3030612 (2013).
doi: 10.3390/biom3030612 pubmed: 24970184 pmcid: 4030957
Mallerman, J., Papinutti, L. & Levin, L. Characterization of beta-glucosidase produced by the white rot fungus Flammulina velutipes. J. Microbiol. Biotechnol. 25, 57–65, https://doi.org/10.4014/jmb.1401.01045 (2015).
doi: 10.4014/jmb.1401.01045 pubmed: 25189408
Harnpicharnchai, P., Champreda, V., Sornlake, W. & Eurwilaichitr, L. A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein. Expr. Purif 67, 61–69, https://doi.org/10.1016/j.pep.2008.05.022 (2009).
doi: 10.1016/j.pep.2008.05.022 pubmed: 18602476
Dan, S. et al. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger beta-glucosidase. J. Biol. Chem. 275, 4973–4980, https://doi.org/10.1074/jbc.275.7.4973 (2000).
doi: 10.1074/jbc.275.7.4973 pubmed: 10671536
Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C. & Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127, 500–507, https://doi.org/10.1016/j.biortech.2012.09.012 (2013).
doi: 10.1016/j.biortech.2012.09.012 pubmed: 23069613
Asha, B. M., Pathma, J. & Sakthivel, N. Isolation and characterization of a novel thermostable beta-glucosidase from Bacillus subtilis SU40. Prikladnaia biokhimiia i mikrobiologiia 51, 24–29, https://doi.org/10.7868/s0555109915010031 (2015).
doi: 10.7868/s0555109915010031 pubmed: 25842900
Srivastava, N. et al. Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application. Biomolecules 9, https://doi.org/10.3390/biom9060220 (2019).
Wang, Y., Li, J. & Xu, Y. Characterization of novel beta-glucosidases with transglycosylation properties from Trichosporon asahii. J. Agric. Food Chemistry 59, 11219–11227, https://doi.org/10.1021/jf203693v (2011).
doi: 10.1021/jf203693v
Uchiyama, T., Miyazaki, K. & Yaoi, K. Characterization of a novel beta-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J. Biol. Chem. 288, 18325–18334, https://doi.org/10.1074/jbc.M113.471342 (2013).
doi: 10.1074/jbc.M113.471342 pubmed: 23661705 pmcid: 3689974
Salgado, J. C. S., Meleiro, L. P., Carli, S. & Ward, R. J. Glucose tolerant and glucose stimulated beta-glucosidases - A review. Bioresour. Technol. 267, 704–713, https://doi.org/10.1016/j.biortech.2018.07.137 (2018).
doi: 10.1016/j.biortech.2018.07.137 pubmed: 30093225
Zaldívar, M., Velásquez, J. C., Contreras, I. & Pérez, L. M. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic J. Biotechnol. 4, 13–14, https://doi.org/10.2225/vol4-issue3-fulltext-7 (2001).
doi: 10.2225/vol4-issue3-fulltext-7
Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F. & Jorge, J. A. Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol. Lett. 240, 137–143, https://doi.org/10.1016/j.femsle.2004.09.021 (2004).
doi: 10.1016/j.femsle.2004.09.021 pubmed: 15522500
Saha, B. C., Freer, S. N. & Bothast, R. J. Production, purification, and properties of a thermostable beta-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol. 60, 3774–3780 (1994).
doi: 10.1128/AEM.60.10.3774-3780.1994
Pereira, M. G. et al. Biochemical properties of an extracellular trehalase from Malbranchea pulchella var. Sulfurea. J. Microbiol. 49, 809–815, https://doi.org/10.1007/s12275-011-0532-4 (2011).
doi: 10.1007/s12275-011-0532-4 pubmed: 22068499
Ribeiro, L. F. C. et al. A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol. Biofuels 7, 115, https://doi.org/10.1186/1754-6834-7-115 (2014).
doi: 10.1186/1754-6834-7-115 pubmed: 25788980 pmcid: 4364333
Matsuo, M. & Yasui, T. Properties of xylanase of Malbranchea pulchella var sulfurea no-48. Agr. Biol. Chem. Tokyo 49, 839–841, https://doi.org/10.1080/00021369.1985.10866806 (1985).
doi: 10.1080/00021369.1985.10866806
Monteiro, L. M. O. et al. Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella beta-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int. J. Biol. Macromol. 136, 1133–1141, https://doi.org/10.1016/j.ijbiomac.2019.06.106 (2019).
doi: 10.1016/j.ijbiomac.2019.06.106 pubmed: 31220494
Decker, C. H., Visser, J. & Schreier, P. Beta-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J. Agric. Food Chemistry 48, 4929–4936, https://doi.org/10.1021/jf000434d (2000).
doi: 10.1021/jf000434d
Zhu, F. M., Du, B., Gao, H. S., Liu, C. J. & Li, J. Purification and characterization of an intracellular beta-glucosidase from the protoplast fusant of Aspergillus oryzae and Aspergillus niger. Prikl. Biokhim. Mikrobiol. 46, 678–684 (2010).
pubmed: 21254729
Suzuki, K. et al. Crystal structures of glycoside hydrolase family 3 beta-glucosidase 1 from Aspergillus aculeatus. Biochem. J. 452, 211–221, https://doi.org/10.1042/BJ20130054 (2013).
doi: 10.1042/BJ20130054 pubmed: 23537284
Giuseppe, P. O. et al. Structural basis for glucose tolerance in GH1 beta-glucosidases. Acta Crystallogr. D. 70, 1631–1639, https://doi.org/10.1107/S1399004714006920 (2014).
doi: 10.1107/S1399004714006920 pubmed: 24914974
Kudo, K., Watanabe, A., Ujiie, S., Shintani, T. & Gomi, K. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl beta-glucosidases screened from Aspergillus oryzae genome. J. Biosci. Bioeng. 120, 614–623, https://doi.org/10.1016/j.jbiosc.2015.03.019 (2015).
doi: 10.1016/j.jbiosc.2015.03.019 pubmed: 25936960
Xu, Z., Zhang, L. & Yu, P. Optimization of a heat-tolerant beta-glucosidase production by Bacillus sp. ZJ1308 and its purification and characterization. Biotechnol. Appl. Biochem. 63, 553–563, https://doi.org/10.1002/bab.1405 (2016).
doi: 10.1002/bab.1405 pubmed: 26077129
Watanabe, A., Suzuki, M., Ujiie, S. & Gomi, K. Purification and enzymatic characterization of a novel beta-1,6-glucosidase from Aspergillus oryzae. J. Biosci. Bioeng. 121, 259–264, https://doi.org/10.1016/j.jbiosc.2015.07.011 (2016).
doi: 10.1016/j.jbiosc.2015.07.011 pubmed: 26320404
Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35, 126–139, https://doi.org/10.1016/j.enzmictec.2003.12.013 (2004).
doi: 10.1016/j.enzmictec.2003.12.013
Rizzatti, A. C., Jorge, J. A., Terenzi, H. F., Rechia, C. G. & Polizeli, M. L. T. M. Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 26, 156–160, https://doi.org/10.1038/sj/jim/7000107 (2001).
doi: 10.1038/sj/jim/7000107 pubmed: 11420656
Baffi, M. A. et al. A novel beta-glucosidase from Sporidiobolus pararoseus: characterization and application in winemaking. J. Food Sci. 76, C997–1002, https://doi.org/10.1111/j.1750-3841.2011.02293.x (2011).
doi: 10.1111/j.1750-3841.2011.02293.x pubmed: 21819399
Joo, A. R. et al. Production and characterization of beta-1,4-glucosidase from a strain of Penicillium pinophilum. Process. Biochem. 45, 851–858, https://doi.org/10.1016/j.procbio.2010.02.005 (2010).
doi: 10.1016/j.procbio.2010.02.005
Zollner, H. Handbook of enzyme inhibitors. (VCH Publishers, 1999).
Cairns, J. R. K. & Esen, A. Beta-Glucosidases. Cell. Mol. Life Sci. 67, 3389–3405, https://doi.org/10.1007/s00018-010-0399-2 (2010).
doi: 10.1007/s00018-010-0399-2
Narasimha, G., Sridevi, A., Ramanjaneyulu, G. & Reddy, B. R. Purification and characterization of beta-glucosidase from Aspergillus niger. Int. J. Food Prop. 19, 652–661, https://doi.org/10.1080/10942912.2015.1023398 (2016).
doi: 10.1080/10942912.2015.1023398
Zhang, Z. et al. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient beta-glucosidase. Biotechnol. Biofuels 7, Artn 10710.1186/1754-6834-7-107 (2014).
Lin, L. L., Yan, R., Liu, Y. Q. & Jiang, W. J. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 101, 8217–8223, https://doi.org/10.1016/j.biortech.2010.05.084 (2010).
doi: 10.1016/j.biortech.2010.05.084 pubmed: 20639116
Cooney, D. G. & Emerson, R. Thermophilic fungi: An account of their biology, activities, and classification. (W. H. Freeman, 1964).
Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem 72, 248–254, https://doi.org/10.1006/abio.1976.9999 (1976).
doi: 10.1006/abio.1976.9999 pubmed: 942051
Kwon, K. S., Lee, J., Kang, H. G. & Hah, Y. C. Detection of beta-glucosidase activity in polyacrylamide gels with esculin as substrate. Appl. Environ. Microbiol. 60, 4584–4586 (1994).
doi: 10.1128/AEM.60.12.4584-4586.1994
Leone, F. A., Baranauskas, J. A., Furriel, R. P. & Borin, I. A. SigrafW: An easy-to-use program for fitting enzyme kinetic data. Biochemistry and molecular biology education: a bimonthly publication of the International Union of Biochemistry and Molecular Biology 33, 399–403, https://doi.org/10.1002/bmb.2005.49403306399 (2005).
doi: 10.1002/bmb.2005.49403306399
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40, https://doi.org/10.1186/1471-2105-9-40 (2008).
doi: 10.1186/1471-2105-9-40 pubmed: 18215316 pmcid: 18215316
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738, https://doi.org/10.1038/nprot.2010.5 (2010).
doi: 10.1038/nprot.2010.5 pubmed: 20360767 pmcid: 2849174
Yang, J. Y. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods. 12, 7–8, https://doi.org/10.1038/nmeth.3213 (2015).
doi: 10.1038/nmeth.3213 pubmed: 25549265 pmcid: 4428668
Ramachandran, S., Kota, P., Ding, F. & Dokholyan, N. V. Automated minimization of steric clashes in protein structures. Proteins. 79, 261–270, https://doi.org/10.1002/prot.22879 (2011).
doi: 10.1002/prot.22879 pubmed: 21058396 pmcid: 3058769
Laskowski, R. A., Moss, D. S. & Thornton, J. M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067, https://doi.org/10.1006/jmbi.1993.1351 (1993).
doi: 10.1006/jmbi.1993.1351 pubmed: 8515464
Bowie, J. U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 253, 164–170, https://doi.org/10.1126/science.1853201 (1991).
doi: 10.1126/science.1853201 pubmed: 1853201
Luthy, R., Bowie, J. U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature. 356, 83–85, https://doi.org/10.1038/356083a0 (1992).
doi: 10.1038/356083a0 pubmed: 1538787
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800, https://doi.org/10.1107/S0021889893005588 (1993).
doi: 10.1107/S0021889893005588
Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic. Acids. Res. 16, 10881–10890, https://doi.org/10.1093/nar/16.22.10881 (1988).
doi: 10.1093/nar/16.22.10881 pubmed: 2849754 pmcid: 338945
Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 15, 305–308, https://doi.org/10.1093/bioinformatics/15.4.305 (1999).
doi: 10.1093/bioinformatics/15.4.305 pubmed: 10320398
Goswami, S., Das, S. & Datta, S. Understanding the role of residues around the active site tunnel towards generating a glucose-tolerant beta-glucosidase from Agrobacterium tumefaciens 5A. Protein Eng. Des. Sel. 30, 523–530, https://doi.org/10.1093/protein/gzx039 (2017).
doi: 10.1093/protein/gzx039 pubmed: 28873987
Langston, J., Sheehy, N. & Xu, F. Substrate specificity of Aspergillus oryzae family 3 beta-glucosidase. Biochim. Biophys. Acta. 1764, 972–978, https://doi.org/10.1016/j.bbapap.2006.03.009 (2006).
doi: 10.1016/j.bbapap.2006.03.009 pubmed: 16650812
Ximenes, E. A., Felix, C. R. & Ulhoa, C. J. Production of cellulases by Aspergillus fumigatus and characterization of one beta-glucosidase. Curr. Microbiol. 32, 119–123, https://doi.org/10.1007/s002849900021 (1996).
doi: 10.1007/s002849900021
Tiwari, R. et al. Bioprospecting of novel thermostable beta-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis. Biotechnol. Biofuels 10, Artn 24610.1186/S13068-017-0932-8 (2017).
Harada, K. M., Tanaka, K., Fukuda, Y., Hashimoto, W. & Murata, K. Degradation of rice bran hemicellulose by Paenibacillus sp strain HC1: gene cloning, characterization and function of beta-D-glucosidase as an enzyme involved in degradation. Arch. Microbiol. 184, 215–224, https://doi.org/10.1007/s00203-005-0038-8 (2005).
doi: 10.1007/s00203-005-0038-8 pubmed: 16205911
Mamma, D., Hatzinikolaou, D. G. & Christakopoulos, P. Biochemical and catalytic properties of two intracellular beta-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J. Mol. Cata.l B-Enzym. 27, 183–190, https://doi.org/10.1016/j.molcatb.2003.11.011 (2004).
doi: 10.1016/j.molcatb.2003.11.011
Bhat, K. M., Gaikwad, J. S. & Maheshwari, R. Purification and characterization of an extracellular beta-glucosidase from the thermophilic fungus Sporotrichum-thermophile and its influence on cellulase activity. J. Gen. Microbiol. 139, 2825–2832, https://doi.org/10.1099/00221287-139-11-2825 (1993).
doi: 10.1099/00221287-139-11-2825
Korotkova, O. G. et al. Isolation and properties of fungal beta-glucosidases. Biochemistry. Biokhimiia 74, 569–577, https://doi.org/10.1134/s0006297909050137 (2009).
doi: 10.1134/s0006297909050137 pubmed: 19538132

Auteurs

Lummy Maria Oliveira Monteiro (LMO)

Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil.

Ana Claudia Vici (AC)

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil.

Matheus Pinto Pinheiro (MP)

Laboratório Nacional de Biociência (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.

Paulo Ricardo Heinen (PR)

Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil.

Arthur Henrique Cavalcante de Oliveira (AHC)

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil.

Richard John Ward (RJ)

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil.

Rolf Alexander Prade (RA)

Department of Microbiology and Molecular Genetics. Oklahoma State University, Stillwater, USA.

Marcos S Buckeridge (MS)

Instituto de Biociências, Universidade de São Paulo. Matão Street, 277, 05508-090, São Paulo, SP, Brazil.

Maria de Lourdes Teixeira de Moraes Polizeli (MLTM)

Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil. polizeli@ffclrp.usp.br.
Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil. polizeli@ffclrp.usp.br.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass

Metabolic engineering of

Jae Sung Cho, Zi Wei Luo, Cheon Woo Moon et al.
1.00
Corynebacterium glutamicum Metabolic Engineering Dicarboxylic Acids Pyridines Pyrones

Glucose and glutamine drive hepatitis E virus replication.

Shaheen Khan, Suruchi Aggarwal, Pooja Bhatia et al.
1.00
Glutamine Virus Replication Hepatitis E virus Glucose Glycolysis
Charcoal Soil Microbiology Soil Biomass Carbon

Classifications MeSH