Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria.
energy metabolism
hemostasis
metabolic resuscitation
mitochondrial dysfunction
myocardial dysfunction
sepsis
Journal
Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
pubmed:
26
4
2020
medline:
11
6
2021
entrez:
26
4
2020
Statut:
ppublish
Résumé
Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.
Identifiants
pubmed: 32333359
doi: 10.1007/s10753-020-01233-w
pii: 10.1007/s10753-020-01233-w
doi:
Substances chimiques
Antioxidants
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1184-1200Références
Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315 (8): 801–810.
pubmed: 26903338
pmcid: 4968574
Reinhart, K., R. Daniels, N. Kissoon, F.R. Machado, R.D. Schachter, and S. Finfer. 2017. Recognizing sepsis as a global health priority - a WHO resolution. The New England Journal of Medicine 377 (5): 414–417.
pubmed: 28658587
Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: myocardial depression in sepsis and septic shock. Critical care (London, England)6 (6): 500–508.
Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8: 1021.
pubmed: 28970829
pmcid: 5609588
Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C.K. Grissom, M.J. Lanspa, S. Shahul, and S.M. Brown. 2018. Septic cardiomyopathy. Critical Care Medicine 46 (4): 625–634.
pubmed: 29227368
Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, and T. Schuerholz. 2019. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest 155 (2): 427–437.
pubmed: 30171861
Fenton, K.E., and M.M. Parker. 2016. Cardiac function and dysfunction in sepsis. Clinics in Chest Medicine 37 (2): 289–298.
pubmed: 27229645
Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.
pubmed: 24185508
Takasu, O., J.P. Gaut, E. Watanabe, To K, R.E. Fagley, B. Sato, S. Jarman, I.R. Efimov, D.L. Janks, A. Srivastava, et al. 2013. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. American Journal of Respiratory and Critical Care Medicine 187 (5): 509–517.
pubmed: 23348975
pmcid: 3733408
Vanasco, V., T. Saez, N.D. Magnani, L. Pereyra, T. Marchini, A. Corach, M.I. Vaccaro, D. Corach, P. Evelson, and S. Alvarez. 2014. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology & Medicine 77: 1–9.
Supinski, G.S., and L.A. Callahan. 2006. Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine 173 (11): 1240–1247.
pubmed: 16514113
pmcid: 2662969
Lowes, D.A., B.M. Thottakam, N.R. Webster, M.P. Murphy, and H.F. Galley. 2008. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radical Biology & Medicine 45 (11): 1559–1565.
Zang, Q.S., H. Sadek, D.L. Maass, B. Martinez, L. Ma, J.A. Kilgore, N.S. Williams, D.E. Frantz, J.G. Wigginton, F.E. Nwariaku, S.E. Wolf, and J.P. Minei. 2012. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American Journal of Physiology Heart and Circulatory Physiology 302 (9): H1847–H1859.
pubmed: 22408027
Vanasco, V., M.C. Cimolai, P. Evelson, and S. Alvarez. 2008. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radical Research 42 (9): 815–823.
pubmed: 19051079
Suliman, H.B., K.E. Welty-Wolf, M. Carraway, L. Tatro, and C.A. Piantadosi. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovascular Research 64 (2): 279–288.
pubmed: 15485687
Joshi, M.S., M.W. Julian, J.E. Huff, J.A. Bauer, Y. Xia, and E.D. Crouser. 2006. Calcineurin regulates myocardial function during acute endotoxemia. American Journal of Respiratory and Critical Care Medicine 173 (9): 999–1007.
pubmed: 16424445
pmcid: 2662919
Larche, J., S. Lancel, S.M. Hassoun, R. Favory, B. Decoster, P. Marchetti, C. Chopin, and R. Neviere. 2006. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. Journal of the American College of Cardiology 48 (2): 377–385.
pubmed: 16843190
Pan, P., H. Zhang, L. Su, X. Wang, and D. Liu. 2018. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules (Basel, Switzerland) 23 (3).
Xu, C., C. Yi, H. Wang, I.C. Bruce, and Q. Xia. 2012. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock (Augusta, Ga) 37 (1): 110–115.
Petronilli, V., D. Penzo, L. Scorrano, P. Bernardi, and F. Di Lisa. 2001. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. The Journal of Biological Chemistry 276 (15): 12030–12034.
pubmed: 11134038
Wang, X., D. Liu, W. Chai, Y. Long, L. Su, and R. Yang. 2015. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock (Augusta, Ga) 43 (3): 292–297.
Zheng, G., J. Lyu, S. Liu, J. Huang, C. Liu, D. Xiang, M. Xie, and Q. Zeng. 2015. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. International Journal of Molecular Medicine 35 (6): 1525–1536.
pubmed: 25873251
pmcid: 4432931
Sánchez-Villamil, J.P., V. D'Annunzio, P. Finocchietto, S. Holod, I. Rebagliati, H. Pérez, J.G. Peralta, R.J. Gelpi, J.J. Poderoso, and M.C. Carreras. 2016. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. The international journal of biochemistry & cell biology 81 (Pt B): 323–334.
Gonzalez, A.S., M.E. Elguero, P. Finocchietto, S. Holod, L. Romorini, S.G. Miriuka, J.G. Peralta, J.J. Poderoso, and M.C. Carreras. 2014. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radical Research 48 (7): 769–783.
pubmed: 24720571
Preau, S., F. Delguste, Y. Yu, I. Remy-Jouet, V. Richard, F. Saulnier, E. Boulanger, and R. Neviere. 2016. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxidants & Redox Signaling 24 (10): 529–542.
Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44 (2): 411–418.
pubmed: 18062988
Piquereau, J., R. Godin, S. Deschênes, V.L. Bessi, M. Mofarrahi, S.N. Hussain, and Y. Burelle. 2013. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 (11): 1837–1851.
pubmed: 24121678
Kim, M.J., S.H. Bae, J.C. Ryu, Y. Kwon, J.H. Oh, J. Kwon, J.S. Moon, K. Kim, A. Miyawaki, M.G. Lee, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12 (8): 1272–1291.
pubmed: 27337507
pmcid: 4968237
Carré, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, M. Stotz, and M. Singer. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.
pubmed: 20538956
pmcid: 2949402
Russell, L.K., C.M. Mansfield, J.J. Lehman, A. Kovacs, M. Courtois, J.E. Saffitz, D.M. Medeiros, M.L. Valencik, J.A. McDonald, and D.P. Kelly. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research 94 (4): 525–533.
pubmed: 14726475
Drosatos, K., R.S. Khan, C.M. Trent, H. Jiang, N.H. Son, W.S. Blaner, S. Homma, P.C. Schulze, and I.J. Goldberg. 2013. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circulation Heart failure 6 (3): 550–562.
pubmed: 23572494
pmcid: 3690188
Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, and D.P. Kelly. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling. Circulation Heart failure 4 (4): 474–482.
pubmed: 21558447
pmcid: 3144030
Solomon, M.A., R. Correa, H.R. Alexander, L.A. Koev, J.P. Cobb, D.K. Kim, W.C. Roberts, Z.M. Quezado, T.D. Scholz, and R.E. Cunnion. 1994. Myocardial energy metabolism and morphology in a canine model of sepsis. The American Journal of Physiology 266 (2 Pt 2): H757–H768.
pubmed: 8141377
Zang, Q., D.L. Maass, S.J. Tsai, and J.W. Horton. 2007. Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infections 8 (1): 41–54.
pubmed: 17381396
pmcid: 6044285
Neri, M., I. Riezzo, C. Pomara, S. Schiavone, and E. Turillazzi. 2016. Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediators of Inflammation 2016: 3423450.
pubmed: 27274621
pmcid: 4870364
Bolaños, J.P., S.J. Heales, S. Peuchen, J.E. Barker, J.M. Land, and J.B. Clark. 1996. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biology & Medicine 21 (7): 995–1001.
Supinski, G.S., M.P. Murphy, and L.A. Callahan. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. American journal of physiology Regulatory, integrative and comparative physiology 297 (4): R1095–R1102.
pubmed: 19657095
pmcid: 2763820
Halestrap, A.P., G.P. McStay, and S.J. Clarke. The permeability transition pore complex: another view. Biochimie84 (2–3): 153–166.
Halestrap, A.P. 2009. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 46 (6): 821–831.
pubmed: 19265700
Hüser, J., and L.A. Blatter. 1999. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. The Biochemical Journal 343 (Pt 2): 311–317.
pubmed: 10510294
pmcid: 1220555
Petronilli, V., G. Miotto, M. Canton, M. Brini, R. Colonna, P. Bernardi, and F. Di Lisa. 1999. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal 76 (2): 725–734.
pubmed: 9929477
pmcid: 1300077
Divakaruni, A.S., and M.D. Brand. 2011. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda, Md) 26 (3): 192–205.
Ruiz-Ramírez, A., O. López-Acosta, M.A. Barrios-Maya, and M. El-Hafidi. 2016. Cell death and heart failure in obesity: role of uncoupling proteins. Oxidative Medicine and Cellular Longevity 2016: 9340654.
pubmed: 27642497
pmcid: 5011521
Youle, R.J., and A.M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science (New York, NY) 337 (6098): 1062–1065.
Kubli, D.A., and Å.B. Gustafsson. 2012. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 111 (9): 1208–1221.
pubmed: 23065344
pmcid: 3538875
Dorn, G.W., and R.N. Kitsis. 2015. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circulation Research 116 (1): 167–182.
pubmed: 25323859
Kelly, D.P., and R.C. Scarpulla. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18 (4): 357–368.
Wenz, T. 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13 (2): 134–142.
pubmed: 23347985
Yao, X., D. Carlson, Y. Sun, L. Ma, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2015. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One 10 (10): e0139416.
pubmed: 26448624
pmcid: 4598156
Chouchani, E.T., L. Kazak, and B.M. Spiegelman. 2017. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. The Journal of Biological Chemistry 292 (41): 16810–16816.
pubmed: 28842500
pmcid: 5641863
Ortega, S.P., E.T. Chouchani, and S. Boudina. 2017. Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 6 (1): 56–61.
pubmed: 28452586
Yu, X.X., J.L. Barger, B.B. Boyer, M.D. Brand, G. Pan, and S.H. Adams. 2000. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology Endocrinology and Metabolism 279 (2): E433–E446.
pubmed: 10913045
Chen, H.W., C. Hsu, T.S. Lu, S.J. Wang, and R.C. Yang. 2003. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock (Augusta, Ga) 20 (3): 274–279.
Miller, W.L. 2013. Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology 379 (1–2): 62–73.
pubmed: 23628605
Maechler, P. 2013. Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology 379 (1–2): 12–18.
pubmed: 23792187
Chow, J., J. Rahman, J.C. Achermann, M.T. Dattani, and S. Rahman. 2017. Mitochondrial disease and endocrine dysfunction. Nature Reviews Endocrinology 13 (2): 92–104.
pubmed: 27716753
Sharma, A.C., H.B. Bosmann, S.J. Motew, K.H. Hales, D.B. Hales, and J.L. Ferguson. 1996. Steroid hormone alterations following induction of chronic intraperitoneal sepsis in male rats. Shock (Augusta, Ga) 6 (2): 150–154.
Fourrier, F., A. Jallot, L. Leclerc, M. Jourdain, A. Racadot, J.L. Chagnon, A. Rime, and C. Chopin. 1994. Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circulatory Shock 43 (4): 171–178.
pubmed: 7895322
Borkowski, J., A. Siemiatkowski, M. Jedynak, S.L. Czaban, and S. Wołczyński. 2003. Serum levels of luteinizing hormone, testosterone and prolactin in patients with septic shock. Przeglad lekarski 60 (11): 706–709.
pubmed: 15058038
Marx, C., S. Petros, S.R. Bornstein, M. Weise, M. Wendt, M. Menschikowski, L. Engelmann, and G. Höffken. 2003. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Critical Care Medicine 31 (5): 1382–1388.
pubmed: 12771606
Zhang, Q., G. Dong, X. Zhao, M. Wang, and C.S. Li. 2014. Prognostic significance of hypothalamic-pituitary-adrenal axis hormones in early sepsis: a study performed in the emergency department. Intensive Care Medicine 40 (10): 1499–1508.
pubmed: 25223852
Giorgi, C., S. Marchi, and P. Pinton. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology 19 (11): 713–730.
pubmed: 30143745
Bravo-Sagua, R., V. Parra, C. López-Crisosto, P. Díaz, A.F. Quest, and S. Lavandero. 2017. Calcium transport and signaling in mitochondria. Comprehensive Physiology 7 (2): 623–634.
pubmed: 28333383
Berridge, M.J., P. Lipp, and M.D. Bootman. 2000. The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1 (1): 11–21.
pubmed: 11413485
Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, and R. Neviere. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Critical Care Medicine 36 (9): 2590–2596.
pubmed: 18679108
Joseph, L.C., D. Kokkinaki, M.C. Valenti, G.J. Kim, E. Barca, D. Tomar, N.E. Hoffman, P. Subramanyam, H.M. Colecraft, M. Hirano, et al. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight 2 (17).
Pinto, B.B., A. Dyson, M. Umbrello, J.E. Carré, C. Ritter, I. Clatworthy, M.R. Duchen, and M. Singer. 2017. Improved survival in a long-term rat model of sepsis is associated with reduced mitochondrial calcium uptake despite increased energetic demand. Critical Care Medicine 45 (8): e840–e848.
pubmed: 28410346
Chandel, N.S. 2014. Mitochondria as signaling organelles. BMC Biology 12: 34.
pubmed: 24884669
pmcid: 4035690
Chandel, N.S. 2015. Evolution of mitochondria as signaling organelles. Cell Metabolism 22 (2): 204–206.
pubmed: 26073494
Chan, S.H., K.L. Wu, L.L. Wang, and J.Y. Chan. 2005. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology & Medicine 39 (5): 603–618.
Emre, Y., C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.M. Cassard-Doulcier. 2007. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. The Biochemical Journal 402 (2): 271–278.
pubmed: 17073824
pmcid: 1798432
Neviere, R., F. Delguste, A. Durand, J. Inamo, E. Boulanger, and S. Preau. 2016. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. International Journal of Molecular Sciences17 (12).
Zang, Q.S., B. Martinez, X. Yao, D.L. Maass, L. Ma, S.E. Wolf, and J.P. Minei. 2012. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 7 (8): e43424.
pubmed: 22952679
pmcid: 3428365
Quirós, P.M., A. Mottis, and J. Auwerx. 2016. Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology 17 (4): 213–226.
pubmed: 26956194
Haynes, C.M., C.J. Fiorese, and Y.F. Lin. 2013. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends in Cell Biology 23 (7): 311–318.
pubmed: 23489877
pmcid: 3700555
Huang, L.J., H.P. Dong, I.C. Chuang, M.S. Liu, and R.C. Yang. 2012. Attenuation of mitochondrial unfolded protein response is associated with hepatic dysfunction in septic rats. Shock (Augusta, Ga), 38 (6): 642–648.
West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, M. Bestwick, B.A. Duguay, N. Raimundo, D.A. MacDuff, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520 (7548): 553–557.
pubmed: 25642965
pmcid: 4409480
Breda, C.N.S., G.G. Davanzo, P.J. Basso, N.O. Saraiva Câmara, and P.M.M. Moraes-Vieira. 2019. Mitochondria as central hub of the immune system. Redox Biology 26: 101255.
pubmed: 31247505
pmcid: 6598836
Vakifahmetoglu-Norberg, H., A.T. Ouchida, and E. Norberg. 2017. The role of mitochondria in metabolism and cell death. Biochemical and Biophysical Research Communications 482 (3): 426–431.
pubmed: 28212726
Gurung, P., J.R. Lukens, and T.D. Kanneganti. 2015. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine 21 (3): 193–201.
pubmed: 25500014
Xu, X., Q. Liu, S. He, J. Zhao, N. Wang, X. Han, and Y. Guo. 2018. Qiang-Xin 1 formula prevents Sepsis-induced apoptosis in murine cardiomyocytes by suppressing endoplasmic reticulum- and mitochondria-associated pathways. Frontiers in Pharmacology 9: 818.
pubmed: 30104976
pmcid: 6077999
Hotchkiss, R.S., S.B. Osmon, K.C. Chang, T.H. Wagner, C.M. Coopersmith, and I.E. Karl. 2005. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. Journal of immunology (Baltimore, Md : 1950) 174 (8): 5110–5118.
Wang, P., Y. Hu, D. Yao, and Y. Li. 2018. Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (6): 2163–2173.
Chen, G., X. Li, M. Huang, X. Zhou, Y. Li, X. Mao, and J. Bai. 2017. The role of thioredoxin-1 in suppression sepsis through inhibiting mitochondrial-induced apoptosis in spleen. Shock (Augusta, Ga) 47 (6): 753–758.
Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? Journal of Thoracic Disease 8 (7): E552–E557.
pubmed: 27501325
pmcid: 4958886
Ding, W., Y. Shen, Q. Li, S. Jiang, and H. Shen. 2018. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis. Life Sciences 199: 1–9.
pubmed: 29505782
Léon, K., K. Pichavant-Rafini, H. Ollivier, V. Monbet, and E. L'Her. 2015. Does induction time of mild hypothermia influence the survival duration of septic rats? Therapeutic Hypothermia and Temperature Management 5 (2): 85–88.
pubmed: 25588077
Schwarzl, M., S. Seiler, M. Wallner, D. von Lewinski, S. Huber, H. Maechler, P. Steendijk, S. Zelzer, M. Truschnig-Wilders, B. Obermayer-Pietsch, A. Lueger, B.M. Pieske, and H. Post. 2013. Mild hypothermia attenuates circulatory and pulmonary dysfunction during experimental endotoxemia. Critical Care Medicine 41 (12): e401–e410.
pubmed: 23963130
Itenov, T.S., M.E. Johansen, M. Bestle, K. Thormar, L. Hein, L. Gyldensted, A. Lindhardt, H. Christensen, S. Estrup, H.P. Pedersen, et al. 2018. Induced hypothermia in patients with septic shock and respiratory failure (CASS): A randomised, controlled, open-label trial. The Lancet Respiratory Medicine 6 (3): 183–192.
pubmed: 29325753
Zhang, Z., L. Chen, and H. Ni. 2015. Antipyretic therapy in critically ill patients with sepsis: an interaction with body temperature. PLoS One 10 (3): e0121919.
pubmed: 25822614
pmcid: 4378844
López-Lluch, G., and P. Navas. 2016. Calorie restriction as an intervention in ageing. The Journal of Physiology 594 (8): 2043–2060.
pubmed: 26607973
pmcid: 4834802
Starr, M.E., A.M. Steele, D.A. Cohen, and H. Saito. 2016. Short-term dietary restriction rescues mice from lethal abdominal sepsis and endotoxemia and reduces the inflammatory/coagulant potential of adipose tissue. Critical Care Medicine 44 (7): e509–e519.
pubmed: 26646465
pmcid: 4896861
Hasegawa, A., H. Iwasaka, S. Hagiwara, N. Asai, T. Nishida, and T. Noguchi. 2012. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. The Journal of Surgical Research 174 (1): 136–141.
pubmed: 21195419
Arabi, Y.M., A.S. Aldawood, S.H. Haddad, H.M. Al-Dorzi, H.M. Tamim, G. Jones, S. Mehta, L. McIntyre, O. Solaiman, M.H. Sakkijha, et al. 2015. Permissive underfeeding or standard enteral feeding in critically ill adults. The New England Journal of Medicine 372 (25): 2398–2408.
pubmed: 25992505
Donnino, M.W., L.W. Andersen, M. Chase, K.M. Berg, M. Tidswell, T. Giberson, R. Wolfe, A. Moskowitz, H. Smithline, L. Ngo, M.N. Cocchi, and Center for Resuscitation Science Research Group. 2016. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Critical Care Medicine 44 (2): 360–367.
pubmed: 26771781
pmcid: 4754670
Donnino, M.W., E. Carney, M.N. Cocchi, I. Barbash, M. Chase, N. Joyce, P.P. Chou, and L. Ngo. 2010. Thiamine deficiency in critically ill patients with sepsis. Journal of Critical Care 25 (4): 576–581.
pubmed: 20646908
Costa, N.A., A.L. Gut, Dorna M. de Souza, J.A. Pimentel, S.M. Cozzolino, P.S. Azevedo, A.A. Fernandes, L.A. Zornoff, S.A. de Paiva, and M.F. Minicucci. 2014. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. Journal of Critical Care 29 (2): 249–252.
pubmed: 24412011
Nuzzo, E., K.M. Berg, L.W. Andersen, J. Balkema, S. Montissol, M.N. Cocchi, X. Liu, and M.W. Donnino. 2015. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with Sepsis. A prospective observational trial. Annals of the American Thoracic Society 12 (11): 1662–1666.
pubmed: 26356483
pmcid: 4724894
McCall, C.E., M. Zabalawi, T. Liu, A. Martin, D.L. Long, N.L. Buechler, Arts RJW, M. Netea, B.K. Yoza, P.W. Stacpoole, et al. 2018. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight 3 (15).
Woolum, J.A., E.L. Abner, A. Kelly, M.L. Thompson Bastin, P.E. Morris, and A.H. Flannery. 2018. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Critical Care Medicine 46 (11): 1747–1752.
pubmed: 30028362
Kim, J., L. Arnaout, and D. Remick. 2019. Hydrocortisone, ascorbic acid and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function and improves survival in murine Sepsis. Shock (Augusta, Ga).
Marik, P.E., V. Khangoora, R. Rivera, M.H. Hooper, and J. Catravas. 2017. Hydrocortisone, vitamin C, and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest 151 (6): 1229–1238.
pubmed: 27940189
Litwak, J.J., N. Cho, H.B. Nguyen, K. Moussavi, and T. Bushell. 2019. Vitamin C, hydrocortisone, and thiamine for the treatment of severe sepsis and septic shock: a retrospective analysis of real-world application. Journal of clinical medicine 8 (4).
Deng, S., Y. Ai, H. Gong, Q. Feng, X. Li, C. Chen, Z. Liu, Y. Wang, Q. Peng, and L. Zhang. 2018. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochemical and Biophysical Research Communications 496 (3): 865–871.
pubmed: 29395086
Fredriksson, K., I. Tjäder, P. Keller, N. Petrovic, B. Ahlman, C. Schéele, J. Wernerman, J.A. Timmons, and O. Rooyackers. 2008. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3 (11): e3686.
pubmed: 18997871
pmcid: 2579334
Cooper, C.E., and G.C. Brown. 2008. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes 40 (5): 533–539.
pubmed: 18839291
Zegdi, R., D. Perrin, M. Burdin, R. Boiteau, and A. Tenaillon. 2002. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Medicine 28 (6): 793–796.
pubmed: 12107688
Li, L., M. Bhatia, Y.Z. Zhu, Y.C. Zhu, R.D. Ramnath, Z.J. Wang, F.B. Anuar, M. Whiteman, M. Salto-Tellez, and P.K. Moore. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (9): 1196–1198.
Ahmad, A., D. Gerö, G. Olah, and C. Szabo. 2016. Effect of endotoxemia in mice genetically deficient in cystathionine-γ-lyase, cystathionine-β-synthase or 3-mercaptopyruvate sulfurtransferase. International Journal of Molecular Medicine 38 (6): 1683–1692.
pubmed: 27748832
pmcid: 5117757
Yu, J., J. Shi, D. Wang, S. Dong, Y. Zhang, M. Wang, L. Gong, Q. Fu, and D. Liu. 2016. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125 (6): 1190–1201.
pubmed: 27575447
Zhang, H.X., J.M. Du, Z.N. Ding, X.Y. Zhu, L. Jiang, and Y.J. Liu. 2017. Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. American Journal of Translational Research 9 (7): 3270–3281.
pubmed: 28804545
pmcid: 5553877
Wagner, F., K. Wagner, S. Weber, B. Stahl, M.W. Knöferl, M. Huber-Lang, D.H. Seitz, P. Asfar, E. Calzia, U. Senftleben, et al. 2011. Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock. Shock (Augusta, Ga) 35 (4): 396–402.
Ferlito, M., Q. Wang, W.B. Fulton, P.M. Colombani, L. Marchionni, K. Fox-Talbot, N. Paolocci, and C. Steenbergen. 2014. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. Journal of immunology (Baltimore, Md : 1950) 192 (4): 1806–1814.
Liu, J., J. Li, P. Tian, B. Guli, G. Weng, L. Li, and Q. Cheng. 2019. HS attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Experimental and Therapeutic Medicine 17 (5): 4064–4072.
pubmed: 31007743
pmcid: 6468938
Zhang, H., S.M. Moochhala, and M. Bhatia. 2008. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. Journal of immunology (Baltimore, Md : 1950) 181 (6): 4320–4331.
Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6 (4): 422–428.
pubmed: 10742149
Mazzola, S., M. Forni, M. Albertini, M.L. Bacci, A. Zannoni, F. Gentilini, M. Lavitrano, F.H. Bach, L.E. Otterbein, and M.G. Clement. 2005. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (14): 2045–2047.
Mitchell, L.A., M.M. Channell, C.M. Royer, S.W. Ryter, A.M. Choi, and J.D. McDonald. 2010. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. American journal of physiology Lung cellular and molecular physiology 299 (6): L891–L897.
pubmed: 20729385
Unuma, K., T. Aki, S. Nagano, R. Watanabe, and K. Uemura. 2018. The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide. Biochemical and Biophysical Research Communications 495 (2): 1668–1674.
pubmed: 29217190
Zhang, W., A. Tao, T. Lan, G. Cepinskas, R. Kao, C.M. Martin, and T. Rui. 2017. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Research in Cardiology 112 (2): 16.
pubmed: 28168403
Lancel, S., S.M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. The Journal of Pharmacology and Experimental Therapeutics 329 (2): 641–648.
pubmed: 19190234
Wang, P., J. Huang, Y. Li, R. Chang, H. Wu, J. Lin, and Z. Huang. 2015. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. International Journal of Molecular Sciences 16 (9): 20595–20608.
pubmed: 26334271
pmcid: 4613220
Shi, J., J.B. Yu, W. Liu, D. Wang, Y. Zhang, L.R. Gong, S.A. Dong, and D.Q. Liu. 2016. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells. Experimental Cell Research 349 (1): 162–167.
pubmed: 27751838
Mayr, F.B., A. Spiel, J. Leitner, C. Marsik, P. Germann, R. Ullrich, O. Wagner, and B. Jilma. 2005. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. American Journal of Respiratory and Critical Care Medicine 171 (4): 354–360.
pubmed: 15557136
Marik, P.E. 2018. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacology & Therapeutics 189: 63–70.
Galley, H.F., M.J. Davies, and N.R. Webster. 1996. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radical Biology & Medicine 20 (1): 139–143.
Borrelli, E., P. Roux-Lombard, G.E. Grau, E. Girardin, B. Ricou, J. Dayer, and P.M. Suter. 1996. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine 24 (3): 392–397.
pubmed: 8625625
Fowler, A.A., A.A. Syed, S. Knowlson, R. Sculthorpe, D. Farthing, C. DeWilde, C.A. Farthing, T.L. Larus, E. Martin, D.F. Brophy, et al. 2014. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. Journal of Translational Medicine 12: 32.
pubmed: 24484547
pmcid: 3937164
Zabet, M.H., M. Mohammadi, M. Ramezani, and H. Khalili. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. Journal of research in pharmacy practice 2016, 5 (2).
Fowler, A.A., J.D. Truwit, R.D. Hite, P.E. Morris, C. DeWilde, A. Priday, B. Fisher, L.R. Thacker, R. Natarajan, D.F. Brophy, et al. 2019. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama 322 (13): 1261–1270.
pubmed: 31573637
pmcid: 6777268
Fujii, T., N. Luethi, P.J. Young, D.R. Frei, G.M. Eastwood, C.J. French, A.M. Deane, Y. Shehabi, L.A. Hajjar, G. Oliveira, et al. 2020. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. Jama 323 (5): 423–431.
pmcid: 7029761
Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries 43 (3): 471–485.