Nitrifying biofilms deprived of organic carbon show higher functional resilience to increases in carbon supply.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 04 2020
28 04 2020
Historique:
received:
27
01
2020
accepted:
08
04
2020
entrez:
30
4
2020
pubmed:
30
4
2020
medline:
22
12
2020
Statut:
epublish
Résumé
In nitrifying biofilms, the organic carbon to ammonia nitrogen (C/N) supply ratio can influence resource competition between heterotrophic and nitrifying bacteria for oxygen and space. We investigated the impact of acute and chronic changes in carbon supply on inter-guild competition in two moving bed biofilm reactors (MBBR), operated with (R1) and without (R0) external organic carbon supply. The microbial and nitrifying community composition of the reactors differed significantly. Interestingly, acute increases in the dissolved organic carbon inhibited nitrification in R1 ten times more than in R0. A sustained increase in the carbon supply decreased nitrification efficiency and increased denitrification activity to a greater extent in R1, and also increased the proportion of potential denitrifiers in both bioreactors. The findings suggest that autotrophic biofilms subjected to increases in carbon supply show higher nitrification and lower denitrification activity than carbon-fed biofilms. This has significant implications for the design of nitrifying bioreactors. Specifically, efficient removal of organic matter before the nitrification unit can improve the robustness of the bioreactor to varying influent quality. Thus, maintaining a low C/N ratio is important in nitrifying biofilters when acute carbon stress is expected or when anoxic activity (e.g. denitrification or H
Identifiants
pubmed: 32346018
doi: 10.1038/s41598-020-64027-y
pii: 10.1038/s41598-020-64027-y
pmc: PMC7189377
doi:
Substances chimiques
Organic Chemicals
0
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7121Références
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
pubmed: 26610024
pmcid: 26610024
doi: 10.1038/nature16461
Flemming, H. C. et al. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
doi: 10.1038/nrmicro.2016.94
Rittmann, B. E. & McCarty, P. L. Environmental biotechnology: Principles and Applications. (Tata McGraw Hill Education, 2001).
Bassin, J. P., Kleerebezem, R., Rosado, A. S., Van Loosdrecht, M. C. M. & Dezotti, M. Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ. Sci. Technol. 46, 1546–1555 (2012).
pubmed: 22243035
doi: 10.1021/es203356z
pmcid: 22243035
Tsuneda, S., Park, S., Hayashi, H., Jung, J. & Hirata, A. Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Sci. Technol. 43, 197–204 (2001).
pubmed: 11381968
doi: 10.2166/wst.2001.0374
pmcid: 11381968
Nogueira, R., Melo, L. F., Purkhold, U., Wuertz, S. & Wagner, M. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Res. 36, 469–481 (2002).
pubmed: 11827353
doi: 10.1016/S0043-1354(01)00229-9
pmcid: 11827353
Michaud, L. et al. C/N ratio-induced structural shift of bacterial communities inside lab-scale aquaculture biofilters. Aquac. Eng. 58, 77–87 (2014).
doi: 10.1016/j.aquaeng.2013.11.002
Ras, M., Lefebvre, D., Derlon, N., Paul, E. & Girbal-Neuhauser, E. Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions. Water Res. 45, 1529–1538 (2011).
pubmed: 21193214
doi: 10.1016/j.watres.2010.11.021
pmcid: 21193214
Zhang, T. C. & Bishop, P. L. Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ. Res. 68, 1107–1115 (1996).
doi: 10.2175/106143096X128504
Zhang, T. C., Fu, Y.-C. & Bishop, P. L. Competition for substrate and space in biofilms. Water Environ. Res. 67, 992–1003 (1995).
doi: 10.2175/106143095X133220
Piculell, M., Welander, P., Jönsson, K. & Welander, T. Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors. Environ. Technol. 37, 732–743 (2016).
pubmed: 26293109
doi: 10.1080/09593330.2015.1080308
Wijeyekoon, S., Mino, T., Satoh, H. & Matsuo, T. Effects of substrate loading rate on biofilm structure. Water Res. 38, 2479–2488 (2004).
pubmed: 15159151
doi: 10.1016/j.watres.2004.03.005
Bassin, J. P. et al. Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios. Bioresour. Technol. 192, 131–141 (2015).
pubmed: 26025351
doi: 10.1016/j.biortech.2015.05.051
Suarez, C. et al. Thickness determines microbial community structure and function in nitrifying biofilms via deterministic assembly. Sci. Rep. 9, 1–10 (2019).
doi: 10.1038/s41598-018-37186-2
Satoh, H., Okabe, S., Nobuo, N. & Watanabe, Y. Significance of substrate C/N Ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 41, 317–321 (2000).
doi: 10.2166/wst.2000.0461
Hu, J. et al. Effect of organic carbon on nitrification efficiency and community composition of nitrifying biofilms. J. Environ. Sci. 21, 387–394 (2009).
doi: 10.1016/S1001-0742(08)62281-0
Piculell, M. New Dimensions of Moving Bed Biofilm Carriers: Influence of biofilm thickness and control possibilities. (Lund University, 2016).
Boyd, C. E. In Fish Diseases: Prevention and Control Strategies 147–166, https://doi.org/10.1016/B978-0-12-804564-0.00006-5 (Elsevier, 2017).
Guerdat, T. C., Losordo, T. M., Classen, J. J., Osborne, J. A. & DeLong, D. Evaluating the effects of organic carbon on biological filtration performance in a large scale recirculating aquaculture system. Aquac. Eng. 44, 10–18 (2011).
doi: 10.1016/j.aquaeng.2010.10.002
Okabe, S., Naitoh, H., Satoh, H. & Watanabe, Y. Structure and function of nitrifying biofilms as determined by molecular techniques and the use of microelectrodes. Water Sci. Technol. 46, 233–241 (2002).
pubmed: 12216629
doi: 10.2166/wst.2002.0482
pmcid: 12216629
Gonzalez-Silva, B. M., Jonassen, K. R., Bakke, I., Østgaard, K. & Vadstein, O. Nitrification at different salinities: Biofilm community composition and physiological plasticity. Water Res. 95, 48–58 (2016).
pubmed: 26986496
doi: 10.1016/j.watres.2016.02.050
pmcid: 26986496
Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Thousand Oaks CA, 2011).
Navada, S. et al. Influence of rate of salinity increase on nitrifying biofilms. J. Clean. Prod. 238 (2019).
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS One 10, 1–13 (2015).
doi: 10.1371/journal.pone.0146021
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
pubmed: 23955772
doi: 10.1038/nmeth.2604
Edgar, R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 74161, https://doi.org/10.1101/074161 (2016).
Hill, M. O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54, 427–432 (1973).
doi: 10.2307/1934352
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
doi: 10.1111/j.1442-9993.1993.tb00438.x
McMurdie, P. J. & Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8 (2013).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2, 5–4 (2019).
Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, 633–642 (2014).
doi: 10.1093/nar/gkt1244
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
pubmed: 22556368
pmcid: 3389763
doi: 10.1093/bioinformatics/bts252
Zhu, S. & Chen, S. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquac. Eng. 25, 1–11 (2001).
doi: 10.1016/S0144-8609(01)00071-1
Michaud, L., Blancheton, J. P., Bruni, V. & Piedrahita, R. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological fillters. Aquac. Eng. 34, 224–233 (2006).
doi: 10.1016/j.aquaeng.2005.07.005
Okabe, S., Hirata, K. & Watanabe, Y. Dynamic changes in spatial microbial distribution in mixed-population biofilms: Experimental results and model simulation. Water Sci. Technol. 32, 67–74 (1995).
doi: 10.2166/wst.1995.0266
Ohashi, A. et al. Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Science and Technology 32, 75–84 (1995).
doi: 10.2166/wst.1995.0267
Okabe, S., Hiratia, K., Ozawa, Y. & Watanabe, Y. Spatial Microbial Distributions of Nitrifiers and Heterotrophs in mixed-population biofilms. Biotechnol. Bioeng. 50, 24–35 (1996).
pubmed: 18626896
doi: 10.1002/(SICI)1097-0290(19960405)50:1<24::AID-BIT4>3.0.CO;2-3
pmcid: 18626896
Torresi, E. et al. Biofilm thickness influences biodiversity in nitrifying MBBRs - Implications on micropollutant removal. Environ. Sci. Technol. 50, 9279–9288 (2016).
pubmed: 27477857
doi: 10.1021/acs.est.6b02007
Okabe, S., Satoh, H. & Watanabe, Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182–91 (1999).
pubmed: 10388720
pmcid: 91473
doi: 10.1128/AEM.65.7.3182-3191.1999
Okabe, S., Oozawa, Y., Hirata, K. & Watanabe, Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res. 30, 1563–1572 (1996).
doi: 10.1016/0043-1354(95)00321-5
Schramm, A., De Beer, D., Gieseke, A. & Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ. Microbiol. 2, 680–686 (2000).
pubmed: 11214800
doi: 10.1046/j.1462-2920.2000.00150.x
pmcid: 11214800
Ren, Y. X., Yang, L. & Liang, X. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour. Technol. 171, 1–9 (2014).
pubmed: 25171329
doi: 10.1016/j.biortech.2014.08.058
pmcid: 25171329
Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta 1827, 136–144 (2013).
pubmed: 23044391
doi: 10.1016/j.bbabio.2012.10.002
pmcid: 23044391
Piculell, M. et al. The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness. Water Res. 104, 292–302 (2016).
pubmed: 27551781
doi: 10.1016/j.watres.2016.08.027
pmcid: 27551781
Matsumoto, S. et al. Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci. Technol. 55, 283–290 (2007).
pubmed: 17546997
doi: 10.2166/wst.2007.269
pmcid: 17546997
Park, H. D. & Noguera, D. R. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J. Appl. Microbiol. 102, 1401–1417 (2007).
pubmed: 17448175
doi: 10.1111/j.1365-2672.2006.03176.x
pmcid: 17448175
Bellucci, M., Ofiţeru, I. D., Graham, D. W., Head, I. M. & Curtis, T. P. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 77, 7787–7796 (2011).
pubmed: 21926211
pmcid: 3209145
doi: 10.1128/AEM.00330-11
Koops, H. P. & Pommerening-Röser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9 (2001).
doi: 10.1111/j.1574-6941.2001.tb00847.x
Bollmann, A., Bär-Gilissen, M.-J. & Laanbroek, H. J. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68, 4751–4757 (2002).
pubmed: 12324316
pmcid: 126422
doi: 10.1128/AEM.68.10.4751-4757.2002
Gieseke, A., Purkhold, U., Wagner, M., Amann, R. & Schramm, A. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm. Appl. Environ. Microbiol. 67, 1351–1362 (2001).
pubmed: 11229931
pmcid: 92734
doi: 10.1128/AEM.67.3.1351-1362.2001
Keshvardoust, P. et al. Biofilm formation inhibition and dispersal of multi-species communities containing ammonia-oxidising bacteria. npj Biofilms Microbiomes 5, 25–28 (2019).
doi: 10.1038/s41522-019-0095-4
Schramm, A. et al. Microscale Distribution of Populations and Activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65, 3690–3696 (1999).
pubmed: 10427067
pmcid: 91552
doi: 10.1128/AEM.65.8.3690-3696.1999
Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).
pubmed: 25398863
pmcid: 4277589
doi: 10.1128/AEM.02734-14
The Prokaryotes: A Handbook on the Biology of Bacteria (Vol 5)., https://doi.org/10.1007/0-387-30741-9 (Springer, 2006).
Vannecke, T. P. W. & Volcke, E. I. P. Modelling microbial competition in nitrifying biofilm reactors. Biotechnol. Bioeng. 112, 2550–2561 (2015).
pubmed: 26084447
doi: 10.1002/bit.25680
Satoh, H., Yamakawa, T., Kindaichi, T., Ito, T. & Okabe, S. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnol. Bioeng. 94, 762–772 (2006).
pubmed: 16477661
doi: 10.1002/bit.20894
Daims, H., Lücker, S. & Wagner, M. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol. 24, 699–712 (2016).
pubmed: 27283264
pmcid: 6884419
doi: 10.1016/j.tim.2016.05.004
Lawson, C. E. & Lücker, S. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165 (2018).
pubmed: 29414055
doi: 10.1016/j.copbio.2018.01.015