A non-diploid DNA status is linked to poor prognosis in renal cell cancer.


Journal

World journal of urology
ISSN: 1433-8726
Titre abrégé: World J Urol
Pays: Germany
ID NLM: 8307716

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 30 12 2019
accepted: 24 04 2020
pubmed: 4 5 2020
medline: 13 8 2021
entrez: 4 5 2020
Statut: ppublish

Résumé

DNA ploidy measurement has earlier been suggested as a potentially powerful prognostic tool in many cancer types, but the role in renal tumors is still unclear. To clarify its prognostic impact, we analyzed the DNA content of 1320 kidney tumors, including clear cell, papillary and chromophobe renal cell carcinoma (RCC) as well as renal oncocytoma and compared these data with clinico-pathological parameters and patient prognosis. A non-diploid DNA content was seen in 37% of 1276 analyzable renal tumors with a striking predominance in chromophobe carcinoma (74.3% of 70 cases). In clear cell carcinoma, a non-diploid DNA content was significantly linked to high-grade (ISUP, Fuhrman, Thoenes; p < 0.0001 each), advanced tumor stage (p = 0.0011), distant metastasis (p < 0.0001), shortened overall survival (p = 0.0010), and earlier recurrence (p < 0.0001). In papillary carcinoma, an aberrant DNA content was significantly linked to high Fuhrman grade (p = 0.0063), distant metastasis (p = 0.0138), shortened overall survival (p = 0.0010), and earlier recurrence (p = 0.0003). In summary, the results of our study identify a non-diploid DNA content as a predictor of an unfavorable prognosis in clear cell and papillary carcinoma.

Identifiants

pubmed: 32361874
doi: 10.1007/s00345-020-03226-8
pii: 10.1007/s00345-020-03226-8
pmc: PMC7969487
doi:

Substances chimiques

DNA, Neoplasm 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

829-837

Références

Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349:g4797
pubmed: 25385470 pmcid: 4707715
Choueiri TK et al (2017) Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol 35(6):591–597
pubmed: 28199818
Motzer RJ et al (2018) Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N Engl J Med 378(14):1277–1290
pubmed: 29562145 pmcid: 5972549
Millot C, Dufer J (2000) Clinical applications of image cytometry to human tumour analysis. Histol Histopathol 15(4):1185–1200
pubmed: 11005244
Tachibana M (1996) Clinical application of flow cytometry to urological malignancies. Keio J Med 45(2):73–80
pubmed: 8683902
Adolfsson J (1994) Prognostic value of deoxyribonucleic acid content in prostate cancer: a review of current results. Int J Cancer 58(2):211–216
pubmed: 8026884
Huh YO, Huck L (1992) Oncology applications of flow cytometry. Clin Lab Sci 5(1):25–27
pubmed: 10147718
Merkel DE, McGuire WL (1990) Ploidy, proliferative activity and prognosis: DNA flow cytometry of solid tumors. Cancer 65(5):1194–205
pubmed: 2406011
Seckinger D, Sugarbaker E, Frankfurt O (1989) DNA content in human cancer: Application in pathology and clinical medicine. Arch Pathol Lab Med 113(6):619–26
pubmed: 2658906
Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy—the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13(5):291–304
pubmed: 26598944
Deans GT et al (1993) The role of flow cytometry in carcinoma of the colon and rectum. Surg Gynecol Obstet 177(4):377–382
pubmed: 8211582
Baildam AD et al (1987) DNA analysis by flow cytometry, response to endocrine treatment and prognosis in advanced carcinoma of the breast. Br J Cancer 55(5):553–559
pubmed: 3038158 pmcid: 2001728
Hemmer J et al (1990) Prognostic implications of DNA ploidy in squamous cell carcinomas of the tongue assessed by flow cytometry. J Cancer Res Clin Oncol 116(1):83–86
pubmed: 2312608
Gustafson H, Tribukait B, Esposti PL (1982) DNA pattern, histological grade and multiplicity related to recurrence rate in superficial bladder tumours. Scand J Urol Nephrol 16(2):135–139
pubmed: 7123163
Vindelov LL et al (1980) Clonal heterogeneity of small-cell anaplastic carcinoma of the lung demonstrated by flow-cytometric DNA analysis. Cancer Res 40(11):4295–4300
pubmed: 6258777
Dagher J et al (2013) Histologic prognostic factors associated with chromosomal imbalances in a contemporary series of 89 clear cell renal cell carcinomas. Hum Pathol 44(10):2106–2115
pubmed: 23806527
Larsson P et al (1993) Tumor-cell proliferation and prognosis in renal-cell carcinoma. Int J Cancer 55(4):566–570
pubmed: 8406982
Li G et al (2005) Different DNA ploidy patterns for the differentiation of common subtypes of renal tumors. Cell Oncol 27(1):51–56
pubmed: 15750207 pmcid: 4611118
Ljungberg B et al (1996) Heterogeneity in renal cell carcinoma and its impact no prognosis–a flow cytometric study. Br J Cancer 74(1):123–127
pubmed: 8679445 pmcid: 2074617
Minervini A et al (2005) Intracapsular clear cell renal carcinoma: ploidy status improves the prognostic value of the 2002 TNM classification. J Urol 174(4 Pt 1):1203–7 (discussion 1207)
pubmed: 16145370
Osterheld MC, Caron L, Meagher-Villemure K (2008) Role of DNA content analysis and immunohistochemistry in the evaluation of the risk of unfavourable outcome in Wilms' tumours. Anticancer Res 28(2A):751–756
pubmed: 18507016
Rey D et al (2003) Study of the prognostic value of DNA ploidy and proliferation index (Ki-67) in renal cell carcinoma with venous thrombus. Prog Urol 13(6):1300–1306
pubmed: 15000303
Yu DS et al (1993) Flow cytometric DNA and cytomorphometric analysis in renal cell carcinoma: its correlation with histopathology and prognosis. J Surg Res 55(5):480–485
pubmed: 8231166
Lanigan D et al (1993) Comparison of flow and static image cytometry in the determination of ploidy. J Clin Pathol 46(2):135–139
pubmed: 8459033 pmcid: 501144
Frankfurt OS et al (1986) Prognostic applications of DNA flow cytometry for human solid tumors. Ann N Y Acad Sci 468:276–290
pubmed: 3460479
Abou-Rebyeh H et al (2001) DNA ploidy is a valuable predictor for prognosis of patients with resected renal cell carcinoma. Cancer 92(9):2280–2285
pubmed: 11745282
Chautard D et al (2004) Prognostic value of uPA, PAI-1, and DNA content in adult renal cell carcinoma. Urology 63(6):1055–1060
pubmed: 15183949
Kushima M et al (1995) Heterogeneity and progression of renal cell carcinomas as revealed by DNA cytofluorometry and the significance of the presence of polyploid cells. Urol Res 23(6):381–386
pubmed: 8788276
Ljungberg B, Roos G, Toolanen G (1990) Tumour DNA content and skeletal metastases in renal cell carcinoma. A preliminary report. J Bone Joint Surg Br 72(1):111–5
pubmed: 2298767
Ljungberg B, Stenling R, Roos G (1985) DNA content in renal cell carcinoma with reference to tumor heterogeneity. Cancer 56(3):503–508
pubmed: 4005812
Sasaki Y et al (1994) Clinical and flow cytometric analyses of renal cell carcinomas with reference to incidental or non-incidental detection. Jpn J Clin Oncol 24(1):32–36
pubmed: 8126918
Kramer BA et al (2005) Prognostic significance of ploidy, MIB-1 proliferation marker, and p53 in renal cell carcinoma. J Am Coll Surg 201(4):565–570
pubmed: 16183495
Baisch H, Otto U, Kloppel G (1986) Malignancy index based on flow cytometry and histology for renal cell carcinomas and its correlation to prognosis. Cytometry 7(2):200–204
pubmed: 3948608
Nakano E et al (1993) Flow cytometric analysis of nuclear DNA content of renal cell carcinoma correlated with histologic and clinical features. Cancer 72(4):1319–1323
pubmed: 8339220
Grignon DJ et al (1989) Renal cell carcinoma. A clinicopathologic and DNA flow cytometric analysis of 103 cases. Cancer 64(10):2133–40
pubmed: 2804902
Yokogi H (1996) Flow cytometric quantitation of the proliferation-associated nuclear antigen p105 and DNA content in patients with renal cell carcinoma. Cancer 78(4):819–826
pubmed: 8756377
Clark PE et al (2005) Prognostic significance of clinicopathologic and deoxyribonucleic acid flow cytometric variables in non-metastatic renal cell carcinoma in the modern era. Urol Oncol 23(5):328–332
pubmed: 16144666
Shalev M et al (2001) The prognostic value of DNA ploidy in small renal cell carcinoma. Pathol Res Pract 197(1):7–12
pubmed: 11209819
Baisch H et al (1982) DNA content of human kidney carcinoma cells in relation to histological grading. Br J Cancer 45(6):878–886
pubmed: 7093122 pmcid: 2011044
Skolarikos A et al (2005) Bcl-2 protein and DNA ploidy in renal cell carcinoma: do they affect patient prognosis? Int J Urol 12(6):563–569
pubmed: 15985079
Stockle M et al (1991) Characterization of conservatively resected renal tumors using automated image analysis DNA cytometry. Cancer 68(9):1926–1931
pubmed: 1717131
Farnsworth WV, DeRose PB, Cohen C (1994) DNA image cytometric analysis of paraffin-embedded sections of small renal cortical neoplasms. Cytometry 18(4):223–227
pubmed: 7895529
Gomella LG et al (1993) Flow cytometric DNA analysis of interleukin-2 responsive renal cell carcinoma. J Surg Oncol 53(4):252–255
pubmed: 8341057
Selli C et al (1996) Cytofluorometric evaluation of nuclear DNA content distribution in renal neoplasms treated by conservative surgery. Urol Int 57(3):151–157
pubmed: 8912443
Di Capua Sacoto C et al (2011) In vivo aneuploidization during the expansion of renal adenocarcinoma. Urol Int 86(4):466–469
pubmed: 21546757
deKernion JB et al (1989) Prognostic significance of the DNA content of renal carcinoma. Cancer 64(8):1669–1673
pubmed: 2790681
Grignon DJ et al (1989) DNA flow cytometry as a predictor of outcome of stage I renal cell carcinoma. Cancer 63(6):1161–1165
pubmed: 2917319
Ruiz-Cerda JL et al (1999) Intratumoral heterogeneity of DNA content in renal cell carcinoma and its prognostic significance. Cancer 86(4):664–671
pubmed: 10440695
Schwabe HW, Adolphs HD, Vogel J (1983) Flow-cytophotometric studies in renal carcinoma. Urol Res 11(3):121–125
pubmed: 6623763
Nenning H, Rassler J, Minh DH (1997) Heterogeneity of DNA distribution pattern in renal tumours. Anal Cell Pathol 14(1):9–17
pubmed: 9283040 pmcid: 4615944
Ruiz-Cerda JL et al (1996) Value of deoxyribonucleic acid ploidy and nuclear morphometry for prediction of disease progression in renal cell carcinoma. J Urol 155(2):459–465
pubmed: 8558635
Katusin D et al (2000) Clinical, histopathological and flow-cytometric properties of incidental renal cell carcinomas. Urol Res 28(1):52–56
pubmed: 10732696
Tannapfel A et al (1996) Prognostic value of ploidy and proliferation markers in renal cell carcinoma. Cancer 77(1):164–171
pubmed: 8630925
Di Silverio F et al (2000) Independent value of tumor size and DNA ploidy for the prediction of disease progression in patients with organ-confined renal cell carcinoma. Cancer 88(4):835–843
pubmed: 10679653
Jow WW et al (1991) Renal oncocytoma: long-term follow-up and flow cytometric DNA analysis. J Surg Oncol 46(1):53–59
pubmed: 1986148
Novelli MR, MacIver AG (1992) Renal cell carcinoma: comparison of morphological and flow cytometric parameters of primary tumour and invasive tumour lying within the renal vein. J Pathol 167(2):229–233
pubmed: 1635003
Schmidt D et al (1986) Flow cytometric analysis of nephroblastomas and related neoplasms. Cancer 58(11):2494–2500
pubmed: 3021318
Schmidt D et al (1989) Malignant rhabdoid tumor. A morphological and flow cytometric study. Pathol Res Pract 184(2):202–10
pubmed: 2469068
Barrantes JC et al (1991) Congenital mesoblastic nephroma: possible prognostic and management value of assessing DNA content. J Clin Pathol 44(4):317–320
pubmed: 1851500 pmcid: 496908
Kumar S et al (1989) Prognostic relevance of DNA content in childhood renal tumours. Br J Cancer 59(2):291–295
pubmed: 2539176 pmcid: 2247016
Gururangan S et al (1992) DNA quantitation of Wilms' tumour (nephroblastoma) using flow cytometry and image analysis. J Clin Pathol 45(6):498–501
pubmed: 1320635 pmcid: 495223
Gelb AB et al (1997) Appraisal of intratumoral microvessel density, MIB-1 score, DNA content, and p53 protein expression as prognostic indicators in patients with locally confined renal cell carcinoma. Cancer 80(9):1768–1775
pubmed: 9351546
Douglass EC et al (1986) Hyperdiploidy and chromosomal rearrangements define the anaplastic variant of Wilms' tumor. J Clin Oncol 4(6):975–981
pubmed: 3012007
Chiang PH et al (1993) Transitional cell carcinoma of the renal pelvis and ureter in Taiwan. DNA analysis by flow cytometry. Cancer 71(12):3988–3992
pubmed: 8508364
O'Meara A et al (1993) Ploidy changes between diagnosis and relapse in childhood renal tumours. Urol Res 21(5):345–347
pubmed: 8279091
Izumi H et al (2002) High telomerase activity correlates with the stabilities of genome and DNA ploidy in renal cell carcinoma. Neoplasia 4(2):103–111
pubmed: 11896565 pmcid: 1550322
El-Naggar AK et al (1995) Interphase cytogenetics of renal cortical neoplasms. Correlation with DNA ploidy by flow cytometry. Am J Clin Pathol 104(2):141–9
pubmed: 7639187
Renshaw AA et al (1996) Aggressive variants of chromophobe renal cell carcinoma. Cancer 78(8):1756–1761
pubmed: 8859189
Rainwater LM, Farrow GM, Lieber MM (1986) Flow cytometry of renal oncocytoma: common occurrence of deoxyribonucleic acid polyploidy and aneuploidy. J Urol 135(6):1167–1171
pubmed: 2423707
del Vecchio MT et al (1998) DNA ploidy pattern in papillary renal cell carcinoma. Correlation with clinicopathological parameters and survival. Pathol Res Pract 194(5):325–33
pubmed: 9651945
Frankfurt OS et al (1984) Proliferative characteristics of primary and metastatic human solid tumors by DNA flow cytometry. Cytometry 5(6):629–635
pubmed: 6518938
Chen F et al (1994) The measurement of DNA content in Wilms' tumor and its clinical significance. J Pediatr Surg 29(4):548–550
pubmed: 8014813
Pepe S et al (2000) Nuclear DNA content-derived parameters correlated with heterogeneous expression of p53 and bcl-2 proteins in clear cell renal carcinomas. Cancer 89(5):1065–1075
pubmed: 10964337
Li P et al (1995) Flow cytometric nuclear DNA content analysis of renal tumors in children: prognostic significance of nuclear DNA ploidy. Tumour Biol 16(6):385–393
pubmed: 7569685
Hedley DW et al (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 31(11):1333–1335
pubmed: 6619538
Centeno BA et al (1994) Flow cytometric analysis of DNA ploidy, percent S-phase fraction, and total proliferative fraction as prognostic indicators of local control and survival following radiation therapy for prostate carcinoma. Int J Radiat Oncol Biol Phys 30(2):309–315
pubmed: 7928459
Fordham MV et al (1986) Prostatic carcinoma cell DNA content measured by flow cytometry and its relation to clinical outcome. Br J Surg 73(5):400–403
pubmed: 3708298
Lundberg S, Carstensen J, Rundquist I (1987) DNA flow cytometry and histopathological grading of paraffin-embedded prostate biopsy specimens in a survival study. Cancer Res 47(7):1973–1977
pubmed: 3815387
Tinari N et al (1993) DNA and S-phase fraction analysis by flow cytometry in prostate cancer. Clinicopathologic implications. Cancer 71(4):1289–1296
pubmed: 8435806
Thoenes W, Storkel S, Rumpelt HJ (1985) Human chromophobe cell renal carcinoma. Virchows Arch B Cell Pathol Incl Mol Pathol 48(3):207–217
pubmed: 2859694
Crotty TB, Farrow GM, Lieber MM (1995) Chromophobe cell renal carcinoma: clinicopathological features of 50 cases. J Urol 154(3):964–967
pubmed: 7637102
Klatte T et al (2008) Pathobiology and prognosis of chromophobe renal cell carcinoma. Urol Oncol 26(6):604–609
pubmed: 18367104
Harlow SP, Duda RB, Bauer KD (1992) Diagnostic utility of DNA content flow cytometry in follicular neoplasms of the thyroid. J Surg Oncol 50(1):1–6
pubmed: 1573886
Mizukami Y et al (1992) Flow cytometric DNA measurement in benign and malignant human thyroid tissues. Anticancer Res 12(6B):2213–2217
pubmed: 1295468
Murata H et al (1999) DNA ploidy alterations detected during dedifferentiation of periosteal chondrosarcoma. Anticancer Res 19(3B):2285–2288
pubmed: 10472345
Oriyama T et al (1998) Progression of hepatocellular carcinoma as reflected by nuclear DNA ploidy and cellular differentiation. J Hepatol 28(1):142–149
pubmed: 9537851
Raber MN et al (1982) Ploidy, proliferative activity and estrogen receptor content in human breast cancer. Cytometry 3(1):36–41
pubmed: 7117052
Quddus MB, Pratt N, Nabi G (2019) Chromosomal aberrations in renal cell carcinoma: An overview with implications for clinical practice. Urol Ann 11(1):6–14
pubmed: 30787564 pmcid: 6362797

Auteurs

Franziska Büscheck (F)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Christoph Fraune (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Martina Kluth (M)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Maximilian Lennartz (M)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Ronald Simon (R)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. R.Simon@uke.de.

Claudia Hube-Magg (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Christian Morlock (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Silvano Barbieri (S)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Carolin Wahl (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Christian Eichelberg (C)

Urologische Praxis Straubing, Stadtgraben 1, 94315, Straubing, Germany.

Christina Möller-Koop (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Doris Höflmayer (D)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Corinna Wittmer (C)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Waldemar Wilczak (W)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Guido Sauter (G)

Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Margit Fisch (M)

Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Till Eichenauer (T)

Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Michael Rink (M)

Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH