Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells.

chloroplasts intracellular communication metabolites mitochondria plastids signalling

Journal

Philosophical transactions of the Royal Society of London. Series B, Biological sciences
ISSN: 1471-2970
Titre abrégé: Philos Trans R Soc Lond B Biol Sci
Pays: England
ID NLM: 7503623

Informations de publication

Date de publication:
22 06 2020
Historique:
entrez: 5 5 2020
pubmed: 5 5 2020
medline: 24 3 2021
Statut: ppublish

Résumé

Endosymbiotic organelles of eukaryotic cells, the plastids, including chloroplasts and mitochondria, are highly integrated into cellular signalling networks. In both heterotrophic and autotrophic organisms, plastids and/or mitochondria require extensive organelle-to-nucleus communication in order to establish a coordinated expression of their own genomes with the nuclear genome, which encodes the majority of the components of these organelles. This goal is achieved by the use of a variety of signals that inform the cell nucleus about the number and developmental status of the organelles and their reaction to changing external environments. Such signals have been identified in both photosynthetic and non-photosynthetic eukaryotes (known as retrograde signalling and retrograde response, respectively) and, therefore, appear to be universal mechanisms acting in eukaryotes of all kingdoms. In particular, chloroplasts and mitochondria both harbour crucial redox reactions that are the basis of eukaryotic life and are, therefore, especially susceptible to stress from the environment, which they signal to the rest of the cell. These signals are crucial for cell survival, lifespan and environmental adjustment, and regulate quality control and targeted degradation of dysfunctional organelles, metabolic adjustments, and developmental signalling, as well as induction of apoptosis. The functional similarities between retrograde signalling pathways in autotrophic and non-autotrophic organisms are striking, suggesting the existence of common principles in signalling mechanisms or similarities in their evolution. Here, we provide a survey for the newcomers to this field of research and discuss the importance of retrograde signalling in the context of eukaryotic evolution. Furthermore, we discuss commonalities and differences in retrograde signalling mechanisms and propose retrograde signalling as a general signalling mechanism in eukaryotic cells that will be also of interest for the specialist. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.

Identifiants

pubmed: 32362267
doi: 10.1098/rstb.2019.0396
pmc: PMC7209961
doi:

Types de publication

Introductory Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20190396

Références

Science. 2003 Feb 7;299(5608):902-6
pubmed: 12574634
Nat Rev Mol Cell Biol. 2016 Apr;17(4):213-26
pubmed: 26956194
Genes (Basel). 2018 Aug 14;9(8):
pubmed: 30110980
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190405
pubmed: 32362250
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190443
pubmed: 32362264
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10154-61
pubmed: 26195779
Plant Physiol. 2016 Jul;171(3):2150-65
pubmed: 27208304
J Exp Bot. 2016 Jun;67(13):3793-807
pubmed: 27053718
Genome Biol. 2009;10(11):R135
pubmed: 19930686
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190397
pubmed: 32362260
Plant Physiol. 2009 Jul;150(3):1286-96
pubmed: 19482916
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10231-8
pubmed: 26286985
Nat Commun. 2019 Jun 14;10(1):2630
pubmed: 31201314
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190409
pubmed: 32362248
Plant Physiol. 2019 Aug;180(4):2034-2048
pubmed: 31138622
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20113-8
pubmed: 23169634
Biochem Soc Trans. 2016 Dec 15;44(6):1717-1724
pubmed: 27913682
PLoS One. 2008 Apr 23;3(4):e1994
pubmed: 18431481
Plant Physiol. 2009 Oct;151(2):603-19
pubmed: 19675153
Mitochondrion. 2007 May;7(3):177-94
pubmed: 17320492
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140330
pubmed: 26323761
Front Plant Sci. 2020 Jan 23;10:1729
pubmed: 32038693
Front Plant Sci. 2012 Dec 24;3:281
pubmed: 23269925
PLoS Biol. 2004 Jun;2(6):e160
pubmed: 15208715
J Exp Bot. 2012 Feb;63(4):1735-50
pubmed: 22131156
Plant J. 2013 Jan;73(1):1-13
pubmed: 22950756
New Phytol. 2018 Apr;218(2):414-431
pubmed: 29332310
EMBO J. 2009 Oct 7;28(19):2861-73
pubmed: 19745808
Annu Rev Plant Biol. 2017 Apr 28;68:85-108
pubmed: 27813652
Science. 2018 Apr 13;360(6385):
pubmed: 29650645
Plant Cell. 2014 May 30;26(5):2201-2222
pubmed: 24879428
Plant Physiol. 2013 May;162(1):254-71
pubmed: 23509177
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190410
pubmed: 32362265
Plant Cell. 2015 May;27(5):1409-27
pubmed: 25944101
J Exp Bot. 2008;59(3):501-20
pubmed: 18079135
Curr Biol. 2011 May 24;21(10):897-903
pubmed: 21565502
Front Plant Sci. 2016 Sep 22;7:1427
pubmed: 27713755
J Theor Biol. 2017 Dec 7;434:50-57
pubmed: 28408315
Front Plant Sci. 2012 Nov 19;3:257
pubmed: 23181068
Cell Metab. 2019 Dec 3;30(6):1040-1054.e7
pubmed: 31523008
Plant Physiol. 2017 Jan;173(1):524-535
pubmed: 27821720
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12246-51
pubmed: 12218172
J Biol Chem. 2013 Feb 1;288(5):3449-59
pubmed: 23229550
Gene. 2007 Apr 15;391(1-2):198-208
pubmed: 17300881
Antioxid Redox Signal. 2003 Feb;5(1):95-101
pubmed: 12626121
Nat Plants. 2019 May;5(5):525-538
pubmed: 31061535
Mol Cell. 2019 Jun 6;74(5):877-890.e6
pubmed: 31023583
Front Cell Dev Biol. 2016 Oct 13;4:109
pubmed: 27790613
Front Plant Sci. 2013 Feb 13;4:14
pubmed: 23407626
Plant Physiol. 2019 May;180(1):634-653
pubmed: 30872424
Plant Physiol. 2014 May 12;165(3):1233-1254
pubmed: 24820025
Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576-9
pubmed: 2112744
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8
pubmed: 11172074
Cell. 1993 Sep 10;74(5):787-99
pubmed: 7690685
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190403
pubmed: 32362259
EMBO Rep. 2016 Oct;17(10):1374-1395
pubmed: 27629041
Physiol Plant. 2012 Feb;144(2):189-200
pubmed: 22098170
Nat Rev Genet. 2008 May;9(5):383-95
pubmed: 18368053
Elife. 2016 Jun 16;5:
pubmed: 27307216
Science. 2014 Apr 25;344(6182):427-30
pubmed: 24763593
Nat Rev Genet. 2004 Feb;5(2):123-35
pubmed: 14735123
Front Plant Sci. 2014 Sep 04;5:432
pubmed: 25237316
Cell Death Differ. 2017 Jun;24(6):955-960
pubmed: 28498364
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40
pubmed: 22431637
Antioxid Redox Signal. 2019 Mar 20;30(9):1206-1219
pubmed: 29092621
FEBS Lett. 2012 Jan 2;586(1):85-8
pubmed: 22154598
J Proteome Res. 2012 Jun 1;11(6):3326-43
pubmed: 22540835
Trends Plant Sci. 2013 Apr;18(4):186-94
pubmed: 23246438
New Phytol. 2017 Feb;213(3):1168-1180
pubmed: 27735068
J Exp Bot. 2012 Jan;63(1):251-60
pubmed: 21926093
J Cell Biol. 2019 Dec 2;218(12):4007-4016
pubmed: 31645461
Science. 2007 May 4;316(5825):715-9
pubmed: 17395793
Cell. 2009 Aug 21;138(4):628-44
pubmed: 19703392
Prog Mol Biol Transl Sci. 2014;127:133-54
pubmed: 25149216
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10162-10167
pubmed: 30988197
FEBS J. 2008 Mar;275(6):1080-8
pubmed: 18318835
Mol Cell. 2004 Apr 9;14(1):1-15
pubmed: 15068799
Biochem J. 2013 Jan 15;449(2):319-31
pubmed: 23240612
Int J Parasitol. 2017 Feb;47(2-3):137-144
pubmed: 27773518
Mol Cell Proteomics. 2010 Jun;9(6):1063-84
pubmed: 20061580
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190406
pubmed: 32362249
AoB Plants. 2010;2010:plq016
pubmed: 22476074
Nature. 2015 Aug 27;524(7566):481-4
pubmed: 26192197
Cell. 2012 Jun 22;149(7):1525-35
pubmed: 22726439
Cell Rep. 2018 Sep 11;24(11):2932-2945.e4
pubmed: 30208318
Front Plant Sci. 2016 Feb 04;7:57
pubmed: 26870072
Plant Physiol. 2017 Mar;173(3):1824-1843
pubmed: 28167700
Mitochondrion. 2015 Mar;21:58-68
pubmed: 25643991
PLoS Pathog. 2019 Nov 21;15(11):e1008008
pubmed: 31751405
Plant Cell. 2006 Jan;18(1):176-97
pubmed: 16326926
Annu Rev Genet. 2007;41:147-68
pubmed: 17600460
Nat Commun. 2017 Jun 29;8(1):49
pubmed: 28663550
Mol Biol Evol. 2019 May 1;36(5):974-989
pubmed: 30938771
Int J Dev Biol. 2005;49(5-6):557-77
pubmed: 16096965
Nat Rev Mol Cell Biol. 2013 Dec;14(12):787-802
pubmed: 24263360
Plant J. 2019 Aug;99(3):521-535
pubmed: 31002470
Photosynth Res. 2013 Nov;117(1-3):221-34
pubmed: 23771643
Protoplasma. 2002 May;219(3-4):123-30
pubmed: 12099212
Annu Rev Plant Biol. 2004;55:373-99
pubmed: 15377225
Curr Biol. 2015 Oct 5;25(19):R911-21
pubmed: 26439354
Cell Metab. 2017 Aug 1;26(2):419-428.e5
pubmed: 28768179
Plant Physiol. 2011 Nov;157(3):1043-55
pubmed: 21949211
Front Plant Sci. 2016 Oct 19;7:1586
pubmed: 27807442
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24900-24906
pubmed: 31732672
Int Rev Cell Mol Biol. 2018;340:35-77
pubmed: 30072093
Biochim Biophys Acta. 2015 Sep;1847(9):1017-24
pubmed: 25667967
Trends Plant Sci. 2009 Apr;14(4):194-9
pubmed: 19285907
Mol Cell. 2017 Nov 2;68(3):540-551.e5
pubmed: 29100054
Nature. 2017 Mar 16;543(7645):443-446
pubmed: 28241148
Plant Cell. 2016 Sep;28(9):2276-2290
pubmed: 27543091
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190415
pubmed: 32362256
Trends Cell Biol. 2017 Jun;27(6):453-463
pubmed: 28274652
Nat Commun. 2019 Jun 14;10(1):2629
pubmed: 31201355
Oxid Med Cell Longev. 2015;2015:482582
pubmed: 26583058
Nature. 2018 May;557(7703):101-105
pubmed: 29695865
Cell. 2010 Jun 25;141(7):1230-40
pubmed: 20603003
Int J Mol Sci. 2012;13(9):11085-101
pubmed: 23109840
Nature. 2020 Mar;579(7799):427-432
pubmed: 32132707
Protoplasma. 2017 Sep;254(5):1845-1855
pubmed: 28337540
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190414
pubmed: 32362258
Nucleic Acids Res. 2016 Jan 4;44(D1):D1251-7
pubmed: 26450961
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5015-5020
pubmed: 30804180
Curr Biol. 2016 Aug 8;26(15):2037-2043
pubmed: 27426517
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190411
pubmed: 32362262
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190404
pubmed: 32362257
Mol Cell. 2015 Apr 2;58(1):123-33
pubmed: 25773600
Nature. 2020 Jan;577(7791):519-525
pubmed: 31942073
J Exp Bot. 2015 Dec;66(22):6957-73
pubmed: 26355147
J Exp Bot. 2016 Jun;67(13):3809-29
pubmed: 27001920
Nature. 2015 Aug 27;524(7566):485-8
pubmed: 26245374
Annu Rev Plant Biol. 2016 Apr 29;67:25-53
pubmed: 26735063
Trends Plant Sci. 2008 Nov;13(11):602-9
pubmed: 18838332
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10270-5
pubmed: 17540731
Trends Plant Sci. 2015 Nov;20(11):754-766
pubmed: 26442680
Nat Rev Mol Cell Biol. 2020 Feb;21(2):85-100
pubmed: 31636403
Nat Rev Mol Cell Biol. 2018 Feb;19(2):109-120
pubmed: 29165426
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130231
pubmed: 24591717
Int J Mol Sci. 2015 Aug 06;16(8):18224-51
pubmed: 26258774
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190401
pubmed: 32362255
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190402
pubmed: 32362254
Plant Mol Biol. 2013 Aug;82(6):603-22
pubmed: 23354836
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190567
pubmed: 32362252
Plant Mol Biol. 1994 Apr;25(1):69-81
pubmed: 8003698
Plant Physiol. 2019 Jan;179(1):18-23
pubmed: 30377235
Plant Mol Biol. 2005 May;58(2):193-212
pubmed: 16027974
Plant J. 2020 Feb 16;:
pubmed: 32064696
J Plant Physiol. 2011 Aug 15;168(12):1345-60
pubmed: 21316793
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190488
pubmed: 32362261
Plant Physiol. 2016 Jul;171(3):1541-50
pubmed: 27255485
Plant J. 2016 Nov;88(4):542-558
pubmed: 27425258
Science. 2015 Oct 23;350(6259):450-4
pubmed: 26494759
Plant Cell. 2009 Apr;21(4):1109-28
pubmed: 19376934
Elife. 2020 Jan 31;9:
pubmed: 32003746
Plant Physiol. 2016 Mar;170(3):1817-30
pubmed: 26823545
Plant Cell. 2013 Sep;25(9):3450-71
pubmed: 24045017
Plant Cell. 2011 Nov;23(11):3992-4012
pubmed: 22128124
Curr Opin Cell Biol. 2018 Aug;53:84-91
pubmed: 30006038
Mol Cell Proteomics. 2005 Aug;4(8):1072-84
pubmed: 15901827
Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130232
pubmed: 24591718
PLoS Genet. 2017 Sep 22;13(9):e1007022
pubmed: 28937985
Cell Death Differ. 2017 Apr;24(4):638-648
pubmed: 28211874
New Phytol. 2019 Dec;224(4):1668-1684
pubmed: 31386759
Cell Rep. 2015 Mar 17;10(10):1681-1691
pubmed: 25772356
J Exp Bot. 2007;58(8):2237-48
pubmed: 17525078
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190413
pubmed: 32362253
Mol Plant. 2014 Jul;7(7):1138-50
pubmed: 24903751
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190399
pubmed: 32362266
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9
pubmed: 21810989
Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8271-6
pubmed: 10393984
Plant Cell. 2012 Jul;24(7):3026-39
pubmed: 22797473
Plant Cell. 2010 Jun;22(6):1909-35
pubmed: 20543028
Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1309-13
pubmed: 8108407
Annu Rev Plant Biol. 2017 Apr 28;68:139-172
pubmed: 28226231
Essays Biochem. 2018 Apr 13;62(1):13-20
pubmed: 29273583
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190408
pubmed: 32362251
Mol Cell Biol. 2005 Feb;25(4):1354-66
pubmed: 15684387
Trends Plant Sci. 2010 Aug;15(8):427-35
pubmed: 20580596
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4930-E4939
pubmed: 29735710
Plant Physiol. 2018 Feb;176(2):1156-1170
pubmed: 29298823
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190400
pubmed: 32362263
J Cell Biol. 2017 Jul 3;216(7):2027-2045
pubmed: 28566324
Plant Physiol. 2011 Apr;155(4):1477-85
pubmed: 21205617
FEBS Lett. 1986 Mar 17;198(1):1-4
pubmed: 3514271
Elife. 2019 Feb 15;8:
pubmed: 30767893
J Biol Chem. 2008 Feb 8;283(6):3120-9
pubmed: 18077450
Mol Plant. 2015 Aug;8(8):1237-52
pubmed: 25778986
Nature. 2020 Mar;579(7799):433-437
pubmed: 32132706
Plant Cell. 2013 Sep;25(9):3472-90
pubmed: 24045019
Free Radic Biol Med. 2019 Apr;134:555-566
pubmed: 30738155

Auteurs

Thomas Pfannschmidt (T)

Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.

Matthew J Terry (MJ)

School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.

Olivier Van Aken (O)

Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.

Pedro M Quiros (PM)

Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.

Articles similaires

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH