Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 05 2020
Historique:
received: 16 01 2020
accepted: 08 04 2020
entrez: 6 5 2020
pubmed: 6 5 2020
medline: 25 11 2020
Statut: epublish

Résumé

Werner Syndrome (WS) and Bloom Syndrome (BS) are disorders of DNA damage repair caused by biallelic disruption of the WRN or BLM DNA helicases respectively. Both are commonly associated with insulin resistant diabetes, usually accompanied by dyslipidemia and fatty liver, as seen in lipodystrophies. In keeping with this, progressive reduction of subcutaneous adipose tissue is commonly observed. To interrogate the underlying cause of adipose tissue dysfunction in these syndromes, CRISPR/Cas9 genome editing was used to generate human pluripotent stem cell (hPSC) lacking either functional WRN or BLM helicase. No deleterious effects were observed in WRN

Identifiants

pubmed: 32367056
doi: 10.1038/s41598-020-64136-8
pii: 10.1038/s41598-020-64136-8
pmc: PMC7198505
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7490

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00014/5
Pays : United Kingdom

Références

IDF Diabetes Atlas 8th edition 2017. (2017).
Reaven, G. Role of insulin resistance in human disease. Diabetes Care 37, 1595–1607 (1988).
doi: 10.2337/diab.37.12.1595
Souren, N. Y. et al. Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: Heritabilities. Diabetologia 50, 2107–2116 (2007).
pubmed: 17694296 pmcid: 2039867 doi: 10.1007/s00125-007-0784-z
Freeman, M. S., Mansfield, M. W., Barrett, J. H. & Grant, P. J. Heritability of features of the insulin resistance syndrome in a community-based study of healthy families. Diabet. Med. 19, 994–999 (2002).
pubmed: 12647839 doi: 10.1046/j.1464-5491.2002.00843.x pmcid: 12647839
Mills, G. W. et al. Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to Type 2 diabetes. Diabetologia 47, 732–738 (2004).
pubmed: 15298351 doi: 10.1007/s00125-004-1338-2 pmcid: 15298351
Falchi, M., Wilson, S. G., Paximadas, D., Swaminathan, R. & Spector, T. D. Quantitative linkage analysis for pancreatic B-cell function and insulin resistance in a large twin cohort. Diabetes 57, 1120–1124 (2008).
pubmed: 18174525 doi: 10.2337/db07-0708 pmcid: 18174525
Epstein, C. J., Martin, G. M., Schultz, A. L. & Motulsky, A. G. Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Med. 45, 177–221 (1966).
doi: 10.1097/00005792-196605000-00001
Goto, M. Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98, 239–254 (1997).
pubmed: 9352493 doi: 10.1016/S0047-6374(97)00111-5 pmcid: 9352493
German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Med. 72, 393–406 (1993).
doi: 10.1097/00005792-199311000-00003
Larsen, N. B. & Hickson, I. D. RecQ helicases: Conserved guardians of genomic integrity. Adv. Exp. Med. Biol. 973, 161–184 (2013).
doi: 10.1007/978-1-4614-5037-5_8
Goto, M., Miller, R. W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5, 239–246 (1996).
pubmed: 8722214 pmcid: 8722214
Huang, S. et al. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27, 558–567 (2006).
pubmed: 16673358 pmcid: 1868417 doi: 10.1002/humu.20337
Renty, C. de & Ellis, N. A. Bloom’s Syndrome: Why Not Premature Aging?: A comparison of the BLM and WRN helicases. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2016.05.010 (2016).
Diaz, A., Vogiatzi, M. G., Sanz, M. M. & German, J. Evaluation of short stature, carbohydrate metabolism and other endocrinopathies in Bloom’s syndrome. Horm. Res. 66, 111–117 (2006).
pubmed: 16763388 pmcid: 16763388
Cheung, H.-H. et al. Telomerase protects werner syndrome lineage-specific stem cells from premature aging. Stem cell reports 2, 534–46 (2014).
pubmed: 24749076 pmcid: 3986587 doi: 10.1016/j.stemcr.2014.02.006
Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–3 (2015).
pubmed: 25931448 pmcid: 4494668 doi: 10.1126/science.aaa1356
Lu, H. et al. Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice. Cell Death Dis. 5, e1226 (2014).
pubmed: 24832598 pmcid: 4047874 doi: 10.1038/cddis.2014.168
Szekely, A. M. et al. Werner protein protects nonproliferating cells from oxidative DNA damage. Mol. Cell Biol. 25, 10492–10506 (2005).
pubmed: 16287861 pmcid: 1291253 doi: 10.1128/MCB.25.23.10492-10506.2005
Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).
pubmed: 20701600 pmcid: 2941545 doi: 10.1111/j.1474-9726.2010.00608.x
Caso, G. et al. Peripheral fat loss and decline in adipogenesis in older humans. Metabolism. 62, 337–40 (2013).
pubmed: 22999012 doi: 10.1016/j.metabol.2012.08.007 pmcid: 22999012
Karagiannides, I. et al. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1772–80 (2001).
pubmed: 11353682 doi: 10.1152/ajpregu.2001.280.6.R1772 pmcid: 11353682
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).
pubmed: 15734683 doi: 10.1016/j.cell.2005.02.003 pmcid: 15734683
Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–68 (2008).
pubmed: 19053174 doi: 10.1371/journal.pbio.0060301 pmcid: 19053174
Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–9 (2009).
pubmed: 19597488 pmcid: 2743561 doi: 10.1038/ncb1909
Freund, A., Orjalo, A. V., Desprez, P.-Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–46 (2010).
pubmed: 20444648 pmcid: 2879478 doi: 10.1016/j.molmed.2010.03.003
Kim, C.-S. et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. (Lond). 30, 1347–55 (2006).
doi: 10.1038/sj.ijo.0803259
Utsal, L. et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-γ levels in 10- to 11-year-old boys with increased BMI. Horm. Res. pædiatrics 78, 31–9 (2012).
doi: 10.1159/000339831
Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J. & Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pr. 105, 141–150 (2014).
doi: 10.1016/j.diabres.2014.04.006
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
pubmed: 14679177 pmcid: 296998 doi: 10.1172/JCI200319451
Chaganti, R. S., Schonberg, S. & German, J. A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc. Natl. Acad. Sci. USA 71, 4508–12 (1974).
pubmed: 4140506 doi: 10.1073/pnas.71.11.4508 pmcid: 4140506
Ray, J. H. & German, J. Bloom’s syndrome and EM9 cells in BrdU-containing medium exhibit similarly elevated frequencies of sister chromatid exchange but dissimilar amounts of cellular proliferation and chromosome disruption. Chromosoma 90, 383–8 (1984).
pubmed: 6510115 doi: 10.1007/BF00294165 pmcid: 6510115
Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, 47e–47 (2002).
doi: 10.1093/nar/30.10.e47
Ahfeldt, T. et al. Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14, 209–219 (2012).
pubmed: 22246346 pmcid: 3385947 doi: 10.1038/ncb2411
Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997 (2015).
pubmed: 26687007 pmcid: 4758946 doi: 10.7554/eLife.12997
Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl. Acad. Sci. USA 112, E6301–E6310 (2015).
pubmed: 26578790 doi: 10.1073/pnas.1515386112 pmcid: 26578790
Zaragosi, L. E. et al. Activin A plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59, 2513–2521 (2010).
pubmed: 20530742 pmcid: 3279533 doi: 10.2337/db10-0013
Chester, N., Kuo, F., Kozak, C., O’Hara, C. D. & Leder, P. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev. 12, 3382–3393 (1998).
pubmed: 9808625 pmcid: 317228 doi: 10.1101/gad.12.21.3382
McDaniel, L. D. et al. Chromosome instability and tumor predisposition inversely correlate with BLM protein levels. DNA Repair (Amst). 2, 1387–1404 (2003).
pubmed: 14642567 doi: 10.1016/j.dnarep.2003.08.006
Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–82 (2004).
pubmed: 15235603 doi: 10.1038/ng1389
Shimamoto, A. et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. Plos one 9, e112900 (2014).
pubmed: 25390333 pmcid: 4229309 doi: 10.1371/journal.pone.0112900
Yusa, K. et al. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom’s syndrome gene. Nature 429, 896–899 (2004).
pubmed: 15215867 doi: 10.1038/nature02646 pmcid: 15215867
Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).
pubmed: 23583168 pmcid: 3942783 doi: 10.1016/j.cmet.2013.03.008
Chen, L. & Oshima, J. Werner Syndrome. J. Biomed. Biotechnol. 2, 46–54 (2002).
pubmed: 12488583 pmcid: 153784 doi: 10.1155/S1110724302201011
Goto, M., Ishikawa, Y., Sugimoto, M. & Furuichi, Y. Werner syndrome: a changing pattern of clinical manifestations in Japan (1917~2008). Biosci. Trends 7, 13–22 (2013).
pubmed: 23524889 pmcid: 23524889
Muftuoglu, M. et al. The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124, 369–377 (2008).
pubmed: 18810497 pmcid: 4586253 doi: 10.1007/s00439-008-0562-0
http://www.proteinatlas.org/ENSG00000197299-BLM/tissue .
Gustafson, B. & Smith, U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. Biol. Chem. 281, 9507–9516 (2006).
pubmed: 16464856 doi: 10.1074/jbc.M512077200 pmcid: 16464856
Okada, A. et al. Adipogenesis of the mesenchymal stromal cells and bone oedema in rheumatoid arthritis. Clin. Exp. Rheumatol. 30, 332–337 (2012).
pubmed: 22325242 pmcid: 22325242
Gustafson, B., Nerstedt, A. & Smith, U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun. 10, (2019).
Payne, F. et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Invest. 124, 4028–38 (2014).
pubmed: 25105364 pmcid: 4151221 doi: 10.1172/JCI73264
Weedon, M. N. et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat. Genet. 45, 947–U152 (2013).
pubmed: 23770608 pmcid: 3785143 doi: 10.1038/ng.2670
Huang-Doran, I. et al. Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes. Diabetes 60, 925–935 (2011).
pubmed: 21270239 pmcid: 3046854 doi: 10.2337/db10-1334
Chen, J. H. et al. Truncation of POC1A associated with short stature and extreme insulin resistance. J. Mol. Endocrinol. 55, 147–158 (2015).
pubmed: 26336158 pmcid: 4722288 doi: 10.1530/JME-15-0090
Vallier, L. et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27, 2655–2666 (2009).
pubmed: 19688839 doi: 10.1002/stem.199 pmcid: 19688839
Chen, J.-H. et al. Evaluation of human dermal fibroblasts directly reprogrammed to adipocyte-like cells as a metabolic disease model. Dis. Model. Mech. 10, 1411–1420 (2017).
pubmed: 28982679 pmcid: 5769609 doi: 10.1242/dmm.030981

Auteurs

Kim Jee Goh (KJ)

The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.

Jian-Hua Chen (JH)

The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.

Nuno Rocha (N)

The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.

Robert K Semple (RK)

The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK. rsemple@exseed.ed.ac.uk.
The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK. rsemple@exseed.ed.ac.uk.
Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK. rsemple@exseed.ed.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH