Automated synthesis of
Antigens, Surface
/ chemistry
Automation
Chemistry Techniques, Synthetic
Gallium Radioisotopes
/ chemistry
Glutamate Carboxypeptidase II
/ chemical synthesis
Isotope Labeling
Lutetium
/ chemistry
Positron Emission Tomography Computed Tomography
Radiochemistry
/ instrumentation
Radioisotopes
/ chemistry
GMP
PET/CT
PSMA
[177Lu]PSMA-I&T
[68Ga]PSMA-HBED-CC
prostate cancer
Journal
Journal of labelled compounds & radiopharmaceuticals
ISSN: 1099-1344
Titre abrégé: J Labelled Comp Radiopharm
Pays: England
ID NLM: 7610510
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
10
01
2020
revised:
20
04
2020
accepted:
29
04
2020
pubmed:
7
5
2020
medline:
25
2
2023
entrez:
7
5
2020
Statut:
ppublish
Résumé
Prostate-specific membrane antigen (PSMA)-based radioligands for positron emission tomography (PET)/computed tomography (CT) studies represent the gold standard for detection of recurrent prostate cancer (PCa). [
Substances chimiques
Antigens, Surface
0
Gallium Radioisotopes
0
Radioisotopes
0
Lutetium
5H0DOZ21UJ
Gallium-68
98B30EPP5S
Lutetium-177
BRH40Y9V1Q
FOLH1 protein, human
EC 3.4.17.21
Glutamate Carboxypeptidase II
EC 3.4.17.21
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-403Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Danckert B, Ferlay J, Engholm G, et al. NORDCAN: cancer incidence, mortality, prevalence and survival in the Nordic countries, Version 8.2. (26.03.2019). Association of the Nordic Cancer Registries. Danish Cancer Society. Available from http://www.ancr.nu.
Engholm G, Ferlay J, Christensen N, et al. NORDCAN-a Nordic tool for cancer information, planning, quality control and research. Acta Oncol. 2010;49(5):725-736.
Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol. 2000;163(6):1632-1642.
Schloss M, Peddada S, Bakhshi A, Phelps A, Velayati A, Adkison JB. Postprostatectomy radiation therapy for biochemically recurrent prostate cancer. Appl Rad Oncol. 2018;7(3):34-39.
Van den Broeck T, van den Bergh RCN, Arfi N, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur Urol. 2019;75(6):967-987.
Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197-209.
Yu CY, Desai B, Ji L, Groshen S, Jadvar H. Comparative performance of PET tracers in biochemical recurrence of prostate cancer: a critical analysis of literature. Am J Nucl Med Mol Imaging. 2014;4(6):580-601.
Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040-1048.
Lindenberg L, Choyke P, Dahut W. Prostate cancer imaging with novel PET tracers. Curr Urol Rep. 2016;17(3):18.
van Leeuwen PJ, Donswijk M, Nandurkar R, et al. Gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography (PET)/computed tomography (CT) predicts complete biochemical response from radical prostatectomy and lymph node dissection in intermediate- and high-risk prostate cancer. BJU Int. 2019;124(1):62-68.
Perera M, Papa N, Christidis D, et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):926-937.
Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconj Chem. 2012;23(4):688-697.
Afshar-Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11-20.
Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52-60.
Bräuer A, Grubert LS, Roll W, et al. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(10):1663-1670.
Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M. 177Lu-PSMA radioligand therapy for prostate cancer. J Nucl Med. 2017;58(8):1196-1200.
Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825-833.
Barber TW, Singh A, Kulkarni HR, Niepsch K, Billah B, Baum RP. Clinical outcomes of 177Lu-PSMA radioligand therapy in earlier and later phases of metastatic castration-resistant prostate cancer grouped by previous taxane chemotherapy. J Nucl Med. 2019;60(7):955-962.
Heck MM, Tauber R, Schwaiger S, et al. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur Urol. 2019;75(6):920-926.
Schultz MK, Mueller D, Baum RP, Leonard Watkins G, Breeman WAP. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides. Appl Radiat Isot. 2013;76:46-54.
Zhernosekov KP, Filosofov DV, Baum RP, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741-1748.
Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914-920.
Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56(8):1169-1176.
Ghosh A, Raju N, Tweedle M, Kumar K. In vitro mouse and human serum stability of a heterobivalent dual-target probe that has strong affinity to gastrin-releasing peptide and neuropeptide Y1 receptors on tumor cells. Cancer Biother Radiopharm. 2017;32(1):24-32.
Wirtz M, Schmidt A, Schottelius M, et al. Synthesis and in vitro and in vivo evaluation of urea-based PSMA inhibitors with increased lipophilicity. EJNMMI Res. 2018;8(1):84.
Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60(3):362-368.
Kuten J, Fahoum I, Savin Z, et al. Head-to-head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in staging prostate cancer using histopathology and immunohistochemical analysis as reference standard. J Nucl Med. 2020;61(4):527-532.
Giesel FL, Cardinale J, Schäfer M, et al. 18F-labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J Nucl Med Mol Imaging. 2016;43(10):1929-1930.
Cardinale J, Martin R, Remde Y, et al. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals. 2017;10(4):77.