The omics discovery REST interface.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
02 07 2020
Historique:
accepted: 21 04 2020
revised: 11 04 2020
received: 10 02 2020
pubmed: 7 5 2020
medline: 26 11 2020
entrez: 7 5 2020
Statut: ppublish

Résumé

The Omics Discovery Index is an open source platform that can be used to access, discover and disseminate omics datasets. OmicsDI integrates proteomics, genomics, metabolomics, models and transcriptomics datasets. Using an efficient indexing system, OmicsDI integrates different biological entities including genes, transcripts, proteins, metabolites and the corresponding publications from PubMed. In addition, it implements a group of pipelines to estimate the impact of each dataset by tracing the number of citations, reanalysis and biological entities reported by each dataset. Here, we present the OmicsDI REST interface (www.omicsdi.org/ws/) to enable programmatic access to any dataset in OmicsDI or all the datasets for a specific provider (database). Clients can perform queries on the API using different metadata information such as sample details (species, tissues, etc), instrumentation (mass spectrometer, sequencer), keywords and other provided annotations. In addition, we present two different libraries in R and Python to facilitate the development of tools that can programmatically interact with the OmicsDI REST interface.

Identifiants

pubmed: 32374843
pii: 5831190
doi: 10.1093/nar/gkaa326
pmc: PMC7319562
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

W380-W384

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N022432/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 208391/Z/17/Z
Pays : United Kingdom

Informations de copyright

© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Nat Med. 2016 May 5;22(5):464-71
pubmed: 27149219
PLoS One. 2017 Dec 20;12(12):e0189875
pubmed: 29261781
Nat Commun. 2019 Aug 5;10(1):3512
pubmed: 31383865
Nat Biotechnol. 2017 May 9;35(5):406-409
pubmed: 28486464
Sci Data. 2016 Mar 15;3:160018
pubmed: 26978244
Brief Bioinform. 2018 Mar 1;19(2):286-302
pubmed: 27881428
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450
pubmed: 30395289
Nat Biotechnol. 2016 Aug 9;34(8):828-837
pubmed: 27504778
Brief Bioinform. 2019 Jun 03;:
pubmed: 31157825
Nat Genet. 2017 May 26;49(6):816-819
pubmed: 28546571
Nat Biotechnol. 2019 Mar;37(3):220-224
pubmed: 30833764
Science. 2009 Oct 9;326(5950):234-6
pubmed: 19815759
Appl Transl Genom. 2014 Sep 18;3(4):116-9
pubmed: 27294026

Auteurs

Gaurhari Dass (G)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK.

Manh-Tu Vu (MT)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK.

Pan Xu (P)

State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, 102206 Beijing, China.

Enrique Audain (E)

Department of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.

Marc-Phillip Hitz (MP)

Department of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.

Björn A Grüning (BA)

Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany.

Henning Hermjakob (H)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK.
State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, 102206 Beijing, China.

Yasset Perez-Riverol (Y)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Adult Male Female Video Games

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH