Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7.
TRAF7
blepharophimosis
craniofacial development
intellectual disability
patent ductus arteriosus
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
13
11
2019
accepted:
23
03
2020
revised:
22
03
2020
pubmed:
8
5
2020
medline:
28
4
2021
entrez:
8
5
2020
Statut:
ppublish
Résumé
Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.
Identifiants
pubmed: 32376980
doi: 10.1038/s41436-020-0792-7
pii: S1098-3600(21)01187-4
pmc: PMC8093014
mid: NIHMS1691645
doi:
Substances chimiques
TRAF7 protein, human
0
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1215-1226Subventions
Organisme : NHGRI NIH HHS
ID : UM1 HG008900
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG009599
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002541
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006542
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01HG009599
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103538
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Références
Zotti T, Scudiero I, Vito P, Stilo R. The emerging role of TRAF7 in tumor development. J Cell Physiol. 2017;232:1233–1238.
doi: 10.1002/jcp.25676
Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol. 2004;6:97–105.
doi: 10.1038/ncb1086
Xu L-G, Li L-Y, Shu H-B. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem. 2004;279:17278–17282.
doi: 10.1074/jbc.C400063200
Scudiero I, Zotti T, Ferravante A, et al. Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFα-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem. 2012;287:6053–6061.
doi: 10.1074/jbc.M111.300137
Tsikitis M, Acosta-Alvear D, Blais A, et al. Traf7, a MyoD1 transcriptional target, regulates nuclear factor-κB activity during myogenesis. EMBO Rep. 2010;11:969–976.
doi: 10.1038/embor.2010.154
Zotti T, Uva A, Ferravante A, et al. TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO) and p65/RelA protein and represses NF-kappaB activation. J Biol Chem. 2011;286:22924–22933.
doi: 10.1074/jbc.M110.215426
Wang L, Wang L, Zhang S, et al. Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep. 2013;29:283–287.
doi: 10.3892/or.2012.2121
Morita Y, Kanei-Ishii C, Nomura T, Ishii S. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell. 2005;16:5433–5444.
doi: 10.1091/mbc.e05-08-0731
Shirakura K, Ishiba R, Kashio T, et al. The Robo4-TRAF7 complex suppresses endothelial hyperpermeability in inflammation. J Cell Sci. 2019;132:jcs220228.
doi: 10.1242/jcs.220228
Clark VE, Erson-Omay EZ, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339:1077–1080.
doi: 10.1126/science.1233009
Clark VE, Harmancı AS, Bai H, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48:1253–1259.
doi: 10.1038/ng.3651
Reuss DE, Piro RM, Jones DTW, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013;125:351–358.
doi: 10.1007/s00401-013-1093-x
Abedalthagafi M, Bi WL, Aizer AA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-oncology. 2016;18:649–655.
doi: 10.1093/neuonc/nov316
Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–416.
doi: 10.1038/ng.3520
Klein CJ, Wu Y, Jentoft ME, et al. Genomic analysis reveals frequent TRAF7 mutations in intraneural perineuriomas. Ann Neurol. 2017;81:316–321.
doi: 10.1002/ana.24854
Goode B, Joseph NM, Stevers M, et al. Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod Pathol. 2018;31:660–673.
doi: 10.1038/modpathol.2017.153
Stevers M, Rabban JT, Garg K, et al. Well-differentiated papillary mesothelioma of the peritoneum is genetically defined by mutually exclusive mutations in TRAF7 and CDC42. Mod Pathol. 2019;32:88–99.
doi: 10.1038/s41379-018-0127-2
Tokita MJ, Chen C-A, Chitayat D, et al. De novo missense variants in TRAF7 cause developmental delay, congenital anomalies, and dysmorphic features. Am J Hum Genet. 2018;103:154–162.
doi: 10.1016/j.ajhg.2018.06.005
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249.
doi: 10.1038/nmeth0410-248
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–930.
doi: 10.1002/humu.22844
Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009;84:524–533.
doi: 10.1016/j.ajhg.2009.03.010
Lessel D, Kubisch C. Hereditary syndromes with signs of premature aging. Dtsch Arztebl Int. 2019;116:489–496.
pubmed: 6726857
pmcid: 6726857
Verloes A, Bremond-Gignac D, Isidor B, et al. Blepharophimosis-mental retardation (BMR) syndromes: a proposed clinical classification of the so-called Ohdo syndrome, and delineation of two new BMR syndromes, one X-linked and one autosomal recessive. Am J Med Genet A. 2006;140:1285–1296.
doi: 10.1002/ajmg.a.31270
Li J, Ma J, Wang KS, et al. Baicalein inhibits TNF-α-induced NF-κB activation and expression of NF-κB-regulated target gene products. Oncol Rep. 2016;36:2771–2776.
doi: 10.3892/or.2016.5108
Sharpe HJ, Pau G, Dijkgraaf GJ, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27:327–341.
doi: 10.1016/j.ccell.2015.02.001
Schapira M, Tyers M, Torrent M, Arrowsmith CH. WD40 repeat domain proteins: a novel target class? Nat Rev Drug Discov. 2017;16:773–786.
doi: 10.1038/nrd.2017.179
Yang J, Boerm M, McCarty M, et al. Mekk3 is essential for early embryonic cardiovascular development. Nat Genet. 2000;24:309–313.
doi: 10.1038/73550
Newbern J, Zhong J, Wickramasinghe RS, et al. Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci USA. 2008;105:17115–17120.
doi: 10.1073/pnas.0805239105
Samuels IS, Karlo JC, Faruzzi AN, et al. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci. 2008;28:6983–6995.
doi: 10.1523/JNEUROSCI.0679-08.2008
Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.
doi: 10.1016/j.cell.2016.12.012
Sil AK, Maeda S, Sano Y, et al. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 2004;428:660–664.
doi: 10.1038/nature02421
Park YC, Burkitt V, Villa AR, et al. Structural basis for self-association and receptor recognition of human TRAF2. Nature. 1999;398:533–538.
doi: 10.1038/19110
Yoshida H, Jono H, Kai H, Li J-D. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem. 2005;280:41111–41121.
doi: 10.1074/jbc.M509526200
Régnier CH, Masson R, Kedinger V, et al. Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci U S A. 2002;99:5585–5590.
doi: 10.1073/pnas.052124799
Shiels H, Li X, Schumacker PT, et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am J Pathol. 2000;157:679–688.
doi: 10.1016/S0002-9440(10)64578-6