Detection of somatic structural variants from short-read next-generation sequencing data.


Journal

Briefings in bioinformatics
ISSN: 1477-4054
Titre abrégé: Brief Bioinform
Pays: England
ID NLM: 100912837

Informations de publication

Date de publication:
20 05 2021
Historique:
received: 10 11 2019
revised: 05 03 2020
accepted: 29 03 2020
pubmed: 8 5 2020
medline: 16 11 2021
entrez: 8 5 2020
Statut: ppublish

Résumé

Somatic structural variants (SVs), which are variants that typically impact >50 nucleotides, play a significant role in cancer development and evolution but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of seven commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the seven SV callers examined in this paper. As the importance of large SVs become increasingly recognized in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection that should be considered when choosing SV callers.

Identifiants

pubmed: 32379294
pii: 5831479
doi: 10.1093/bib/bbaa056
pmc: PMC8138798
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© The Author(s) 2020. Published by Oxford University Press.

Références

Bioinformatics. 2012 Sep 15;28(18):i333-i339
pubmed: 22962449
Nature. 2015 Oct 1;526(7571):75-81
pubmed: 26432246
BMC Bioinformatics. 2013;14 Suppl 11:S1
pubmed: 24564169
Genome Biol. 2014 Jun 26;15(6):R84
pubmed: 24970577
Front Genet. 2015 Apr 13;6:138
pubmed: 25918519
Cell. 2011 Jan 7;144(1):27-40
pubmed: 21215367
Cell. 2013 Apr 25;153(3):666-77
pubmed: 23622249
Genome Res. 2011 Jun;21(6):974-84
pubmed: 21324876
Oncotarget. 2015 Mar 20;6(8):5477-89
pubmed: 25849937
Genome Biol. 2019 Jun 3;20(1):117
pubmed: 31159850
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Genome Biol. 2018 Nov 6;19(1):188
pubmed: 30400818
F1000Res. 2017 May 10;6:664
pubmed: 28781756
Nat Methods. 2009 Sep;6(9):677-81
pubmed: 19668202
Genome Biol. 2016 Jun 10;17(1):126
pubmed: 27287201
Gigascience. 2018 Jul 1;7(7):
pubmed: 29982625
ESMO Open. 2016 Nov 18;1(5):e000094
pubmed: 27933214
Nucleic Acids Res. 2012 May;40(10):e72
pubmed: 22323520
PLoS One. 2013 Apr 29;8(4):e62856
pubmed: 23638157
Brief Funct Genomics. 2015 Sep;14(5):305-14
pubmed: 25877305
Oncotarget. 2013 Nov;4(11):1868-81
pubmed: 24240121
Bioinformatics. 2012 Feb 1;28(3):423-5
pubmed: 22155870
PLoS Comput Biol. 2016 Apr 21;12(4):e1004873
pubmed: 27100738
Bioinformatics. 2016 Apr 15;32(8):1220-2
pubmed: 26647377
Cell Rep. 2018 Jul 10;24(2):515-527
pubmed: 29996110
Genome Res. 2017 Dec;27(12):2050-2060
pubmed: 29097403
Am J Hum Genet. 2005 Jul;77(1):78-88
pubmed: 15918152
Methods. 2016 Jun 1;102:36-49
pubmed: 26845461
Nat Commun. 2019 Jul 19;10(1):3240
pubmed: 31324872
Cancer Sci. 2018 Mar;109(3):513-522
pubmed: 29345757
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W567-75
pubmed: 21715388
Bioinformatics. 2009 Nov 1;25(21):2865-71
pubmed: 19561018
PLoS Comput Biol. 2019 May 28;15(5):e1007069
pubmed: 31136576
Bioinformatics. 2012 Nov 1;28(21):2711-8
pubmed: 22942022
Brief Bioinform. 2015 Sep;16(5):852-64
pubmed: 25504367
Genome Res. 2018 Apr;28(4):581-591
pubmed: 29535149
Nat Rev Genet. 2011 May;12(5):363-76
pubmed: 21358748
PLoS One. 2013;8(3):e59128
pubmed: 23527109

Auteurs

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH