The HMGB1-RAGE axis modulates the growth of autophagy-deficient hepatic tumors.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
07 05 2020
Historique:
received: 18 10 2019
accepted: 09 04 2020
revised: 08 04 2020
entrez: 9 5 2020
pubmed: 10 5 2020
medline: 19 3 2021
Statut: epublish

Résumé

Autophagy is an intracellular lysosomal degradative pathway important for tumor surveillance. Autophagy deficiency can lead to tumorigenesis. Autophagy is also known to be important for the aggressive growth of tumors, yet the mechanism that sustains the growth of autophagy-deficient tumors is not unclear. We previously reported that progression of hepatic tumors developed in autophagy-deficient livers required high mobility group box 1 (HMGB1), which was released from autophagy-deficient hepatocytes. In this study we examined the pathological features of the hepatic tumors and the mechanism of HMGB1-mediated tumorigenesis. We found that in liver-specific autophagy-deficient (Atg7

Identifiants

pubmed: 32382012
doi: 10.1038/s41419-020-2536-7
pii: 10.1038/s41419-020-2536-7
pmc: PMC7206028
doi:

Substances chimiques

HMGB1 Protein 0
Receptor for Advanced Glycation End Products 0
Autophagy-Related Protein 7 EC 6.2.1.45

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

333

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK116605
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA082709
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA023168
Pays : United States

Références

Ni, H. M. et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J. Hepatol. 61, 617–625 (2014).
pubmed: 24815875 pmcid: 4143992 doi: 10.1016/j.jhep.2014.04.043
Khambu, B. et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419–2435 (2018).
pubmed: 29558368 pmcid: 5983330 doi: 10.1172/JCI91814
Inami, Y. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275–284 (2011).
pubmed: 21482715 pmcid: 3080263 doi: 10.1083/jcb.201102031
Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).
pubmed: 21498569 pmcid: 3078705 doi: 10.1101/gad.2016211
Hu, T. H. et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97, 1929–1940 (2003).
pubmed: 12673720 doi: 10.1002/cncr.11266
Ho, D. W. H. et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut 66, 1496–1506 (2017).
pubmed: 27974549 doi: 10.1136/gutjnl-2016-312734
Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).
pubmed: 19524509 pmcid: 2802318 doi: 10.1016/j.cell.2009.03.048
Tian, Y. et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ. 22, 1025–1034 (2015).
pubmed: 25526090 doi: 10.1038/cdd.2014.201
Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).
pubmed: 20173742 doi: 10.1038/ncb2021
Tummala, K. S. et al. Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep. 19, 584–600 (2017).
pubmed: 28423321 pmcid: 5409928 doi: 10.1016/j.celrep.2017.03.059
Lowes, K. N., Brennan, B. A., Yeoh, G. C. & Olynyk, J. K. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol. 154, 537–541 (1999).
pubmed: 10027411 pmcid: 1849988 doi: 10.1016/S0002-9440(10)65299-6
Holczbauer, A. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221–231 (2013).
pubmed: 23523670 pmcid: 3913051 doi: 10.1053/j.gastro.2013.03.013
Mu, X. et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J. Clin. Invest. 125, 3891–3903 (2015).
pubmed: 26348897 pmcid: 4607132 doi: 10.1172/JCI77995
Yamashita, T. & Wang, X. W. Cancer stem cells in the development of liver cancer. J. Clin. Invest. 123, 1911–1918 (2013).
pubmed: 23635789 pmcid: 3635728 doi: 10.1172/JCI66024
Nio, K., Yamashita, T. & Kaneko, S. The evolving concept of liver cancer stem cells. Mol. Cancer 16, 4 (2017).
pubmed: 28137313 pmcid: 5282887 doi: 10.1186/s12943-016-0572-9
Liu, K. et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol. Cell 68, 281–292 (2017). e285.
pubmed: 29033320 pmcid: 5687282 doi: 10.1016/j.molcel.2017.09.022
Lee, S., Zhou, P., Gupta, A. & Shin, S. Reactive ductules are associated with angiogenesis and tumor cell proliferation in pediatric liver cancer. Hepatol. Commun. 2, 1199–1212 (2018).
pubmed: 30288475 pmcid: 6167070 doi: 10.1002/hep4.1204
El-Serag, H. B. Hepatocellular carcinoma. N. Engl. J. Med. 365, 1118–1127 (2011).
pubmed: 21992124 doi: 10.1056/NEJMra1001683 pmcid: 21992124
Khambu, B. et al. Hepatic autophagy deficiency compromises farnesoid X receptor functionality and causes cholestatic injury. Hepatology 69, 2196–2213 (2019).
pubmed: 30520052 pmcid: 6461497 doi: 10.1002/hep.30407
Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).
pubmed: 25132496 pmcid: 4165611 doi: 10.1016/j.ccr.2014.07.001
Fuchs, C. D. et al. Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2(-/-) mice by modulating composition, signalling and excretion of faecal bile acids. Gut 67, 1683–1691 (2018).
pubmed: 29636383 pmcid: 6109278 doi: 10.1136/gutjnl-2017-314553
Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209, 551–563 (2012).
pubmed: 22370717 pmcid: 3302219 doi: 10.1084/jem.20111739
Yaser, A. M. et al. The role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma. Int. J. Mol. Sci. 13, 5982–5997 (2012).
pubmed: 22754344 pmcid: 3382819 doi: 10.3390/ijms13055982
Faes, S. & Dormond, O. PI3K and AKT: unfaithful partners in cancer. Int. J. Mol. Sci. 16, 21138–21152 (2015).
pubmed: 26404259 pmcid: 4613246 doi: 10.3390/ijms160921138
Martini, M., De Santis, M. C., Braccini, L., Gulluni, F. & Hirsch, E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 46, 372–383 (2014).
pubmed: 24897931 doi: 10.3109/07853890.2014.912836
Ni, H. M. et al. Dual roles of mammalian target of rapamycin in regulating liver injury and tumorigenesis in autophagy-defective mouse liver. Hepatology. 70, 2142–2155 (2019).
pubmed: 31095752 doi: 10.1002/hep.30770
Ito, Y. et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27, 951–958 (1998).
pubmed: 9537433 doi: 10.1002/hep.510270409
Lee, T. K. et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9, 50–63 (2011).
pubmed: 21726833 doi: 10.1016/j.stem.2011.06.005
He, G. & Karin, M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 21, 159–168 (2011).
pubmed: 21187858 doi: 10.1038/cr.2010.183
Feng, G. S. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell 21, 150–154 (2012).
pubmed: 22340589 pmcid: 3285429 doi: 10.1016/j.ccr.2012.01.001
Bai, L., Ni, H. M., Chen, X., DiFrancesca, D. & Yin, X. M. Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am. J. Pathol. 166, 1523–1532 (2005).
pubmed: 15855651 pmcid: 1606404 doi: 10.1016/S0002-9440(10)62368-1
Gaskell, H., Ge, X. & Nieto, N. High-mobility group box-1 and liver disease. Hepatol. Commun. 2, 1005–1020 (2018).
pubmed: 30202816 pmcid: 6128227 doi: 10.1002/hep4.1223
McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).
pubmed: 25082194 pmcid: 6220424 doi: 10.1038/ncb3015
Hernandez, C. et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J. Clin. Invest. 128, 2436–2451 (2018).
pubmed: 29558367 pmcid: 5983315 doi: 10.1172/JCI91786
Chen, R. et al. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67, 1823–1841 (2018).
pubmed: 29149457 pmcid: 5906197 doi: 10.1002/hep.29663
Zeng, S. et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39, 422–432 (2004).
pubmed: 14767995 doi: 10.1002/hep.20045 pmcid: 14767995
Sun, Z. et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer 17, 147 (2018).
pubmed: 30309355 pmcid: 6182840 doi: 10.1186/s12943-018-0897-7
Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014).
pubmed: 24843020 pmcid: 4017650 doi: 10.7554/eLife.02242
Han, Y. H., Kim, S. H., Kim, S. Z. & Park, W. H. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol. Rep. 20, 689–693 (2008).
pubmed: 18695925 pmcid: 18695925
Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).
pubmed: 25628363 pmcid: 4344498 doi: 10.1093/nar/gkv047
Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).
pubmed: 26232224 pmcid: 4522279 doi: 10.1016/j.cell.2015.07.016
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 pmcid: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 pmcid: 24227677 doi: 10.1093/bioinformatics/btt656
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Huang, D. W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).
pubmed: 17784955 pmcid: 2375021 doi: 10.1186/gb-2007-8-9-r183

Auteurs

Bilon Khambu (B)

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. bkhambu@tulane.edu.
Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA. bkhambu@tulane.edu.

Honghai Hong (H)

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
The third afflilated hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Sheng Liu (S)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

Gang Liu (G)

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Xiaoyun Chen (X)

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Zheng Dong (Z)

Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.

Jun Wan (J)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
School of Informatics and Computing, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, 46202, USA.

Xiao-Ming Yin (XM)

Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH