The HMGB1-RAGE axis modulates the growth of autophagy-deficient hepatic tumors.
Animals
Autophagy
Autophagy-Related Protein 7
/ metabolism
Carcinogenesis
/ metabolism
Cell Proliferation
Gene Deletion
HMGB1 Protein
/ metabolism
Hepatic Stellate Cells
/ metabolism
Hepatocytes
/ metabolism
Humans
Liver
/ metabolism
Liver Cirrhosis
/ pathology
Liver Neoplasms
/ immunology
Macrophages
/ metabolism
Mice, Inbred C57BL
Receptor for Advanced Glycation End Products
/ metabolism
Signal Transduction
Stem Cells
/ metabolism
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
07 05 2020
07 05 2020
Historique:
received:
18
10
2019
accepted:
09
04
2020
revised:
08
04
2020
entrez:
9
5
2020
pubmed:
10
5
2020
medline:
19
3
2021
Statut:
epublish
Résumé
Autophagy is an intracellular lysosomal degradative pathway important for tumor surveillance. Autophagy deficiency can lead to tumorigenesis. Autophagy is also known to be important for the aggressive growth of tumors, yet the mechanism that sustains the growth of autophagy-deficient tumors is not unclear. We previously reported that progression of hepatic tumors developed in autophagy-deficient livers required high mobility group box 1 (HMGB1), which was released from autophagy-deficient hepatocytes. In this study we examined the pathological features of the hepatic tumors and the mechanism of HMGB1-mediated tumorigenesis. We found that in liver-specific autophagy-deficient (Atg7
Identifiants
pubmed: 32382012
doi: 10.1038/s41419-020-2536-7
pii: 10.1038/s41419-020-2536-7
pmc: PMC7206028
doi:
Substances chimiques
HMGB1 Protein
0
Receptor for Advanced Glycation End Products
0
Autophagy-Related Protein 7
EC 6.2.1.45
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
333Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK116605
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA082709
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA023168
Pays : United States
Références
Ni, H. M. et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J. Hepatol. 61, 617–625 (2014).
pubmed: 24815875
pmcid: 4143992
doi: 10.1016/j.jhep.2014.04.043
Khambu, B. et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J. Clin. Invest. 128, 2419–2435 (2018).
pubmed: 29558368
pmcid: 5983330
doi: 10.1172/JCI91814
Inami, Y. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275–284 (2011).
pubmed: 21482715
pmcid: 3080263
doi: 10.1083/jcb.201102031
Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).
pubmed: 21498569
pmcid: 3078705
doi: 10.1101/gad.2016211
Hu, T. H. et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97, 1929–1940 (2003).
pubmed: 12673720
doi: 10.1002/cncr.11266
Ho, D. W. H. et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut 66, 1496–1506 (2017).
pubmed: 27974549
doi: 10.1136/gutjnl-2016-312734
Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).
pubmed: 19524509
pmcid: 2802318
doi: 10.1016/j.cell.2009.03.048
Tian, Y. et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ. 22, 1025–1034 (2015).
pubmed: 25526090
doi: 10.1038/cdd.2014.201
Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).
pubmed: 20173742
doi: 10.1038/ncb2021
Tummala, K. S. et al. Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep. 19, 584–600 (2017).
pubmed: 28423321
pmcid: 5409928
doi: 10.1016/j.celrep.2017.03.059
Lowes, K. N., Brennan, B. A., Yeoh, G. C. & Olynyk, J. K. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol. 154, 537–541 (1999).
pubmed: 10027411
pmcid: 1849988
doi: 10.1016/S0002-9440(10)65299-6
Holczbauer, A. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221–231 (2013).
pubmed: 23523670
pmcid: 3913051
doi: 10.1053/j.gastro.2013.03.013
Mu, X. et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J. Clin. Invest. 125, 3891–3903 (2015).
pubmed: 26348897
pmcid: 4607132
doi: 10.1172/JCI77995
Yamashita, T. & Wang, X. W. Cancer stem cells in the development of liver cancer. J. Clin. Invest. 123, 1911–1918 (2013).
pubmed: 23635789
pmcid: 3635728
doi: 10.1172/JCI66024
Nio, K., Yamashita, T. & Kaneko, S. The evolving concept of liver cancer stem cells. Mol. Cancer 16, 4 (2017).
pubmed: 28137313
pmcid: 5282887
doi: 10.1186/s12943-016-0572-9
Liu, K. et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol. Cell 68, 281–292 (2017). e285.
pubmed: 29033320
pmcid: 5687282
doi: 10.1016/j.molcel.2017.09.022
Lee, S., Zhou, P., Gupta, A. & Shin, S. Reactive ductules are associated with angiogenesis and tumor cell proliferation in pediatric liver cancer. Hepatol. Commun. 2, 1199–1212 (2018).
pubmed: 30288475
pmcid: 6167070
doi: 10.1002/hep4.1204
El-Serag, H. B. Hepatocellular carcinoma. N. Engl. J. Med. 365, 1118–1127 (2011).
pubmed: 21992124
doi: 10.1056/NEJMra1001683
pmcid: 21992124
Khambu, B. et al. Hepatic autophagy deficiency compromises farnesoid X receptor functionality and causes cholestatic injury. Hepatology 69, 2196–2213 (2019).
pubmed: 30520052
pmcid: 6461497
doi: 10.1002/hep.30407
Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).
pubmed: 25132496
pmcid: 4165611
doi: 10.1016/j.ccr.2014.07.001
Fuchs, C. D. et al. Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2(-/-) mice by modulating composition, signalling and excretion of faecal bile acids. Gut 67, 1683–1691 (2018).
pubmed: 29636383
pmcid: 6109278
doi: 10.1136/gutjnl-2017-314553
Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209, 551–563 (2012).
pubmed: 22370717
pmcid: 3302219
doi: 10.1084/jem.20111739
Yaser, A. M. et al. The role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma. Int. J. Mol. Sci. 13, 5982–5997 (2012).
pubmed: 22754344
pmcid: 3382819
doi: 10.3390/ijms13055982
Faes, S. & Dormond, O. PI3K and AKT: unfaithful partners in cancer. Int. J. Mol. Sci. 16, 21138–21152 (2015).
pubmed: 26404259
pmcid: 4613246
doi: 10.3390/ijms160921138
Martini, M., De Santis, M. C., Braccini, L., Gulluni, F. & Hirsch, E. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 46, 372–383 (2014).
pubmed: 24897931
doi: 10.3109/07853890.2014.912836
Ni, H. M. et al. Dual roles of mammalian target of rapamycin in regulating liver injury and tumorigenesis in autophagy-defective mouse liver. Hepatology. 70, 2142–2155 (2019).
pubmed: 31095752
doi: 10.1002/hep.30770
Ito, Y. et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27, 951–958 (1998).
pubmed: 9537433
doi: 10.1002/hep.510270409
Lee, T. K. et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9, 50–63 (2011).
pubmed: 21726833
doi: 10.1016/j.stem.2011.06.005
He, G. & Karin, M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 21, 159–168 (2011).
pubmed: 21187858
doi: 10.1038/cr.2010.183
Feng, G. S. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell 21, 150–154 (2012).
pubmed: 22340589
pmcid: 3285429
doi: 10.1016/j.ccr.2012.01.001
Bai, L., Ni, H. M., Chen, X., DiFrancesca, D. & Yin, X. M. Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am. J. Pathol. 166, 1523–1532 (2005).
pubmed: 15855651
pmcid: 1606404
doi: 10.1016/S0002-9440(10)62368-1
Gaskell, H., Ge, X. & Nieto, N. High-mobility group box-1 and liver disease. Hepatol. Commun. 2, 1005–1020 (2018).
pubmed: 30202816
pmcid: 6128227
doi: 10.1002/hep4.1223
McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).
pubmed: 25082194
pmcid: 6220424
doi: 10.1038/ncb3015
Hernandez, C. et al. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J. Clin. Invest. 128, 2436–2451 (2018).
pubmed: 29558367
pmcid: 5983315
doi: 10.1172/JCI91786
Chen, R. et al. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67, 1823–1841 (2018).
pubmed: 29149457
pmcid: 5906197
doi: 10.1002/hep.29663
Zeng, S. et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39, 422–432 (2004).
pubmed: 14767995
doi: 10.1002/hep.20045
pmcid: 14767995
Sun, Z. et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer 17, 147 (2018).
pubmed: 30309355
pmcid: 6182840
doi: 10.1186/s12943-018-0897-7
Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014).
pubmed: 24843020
pmcid: 4017650
doi: 10.7554/eLife.02242
Han, Y. H., Kim, S. H., Kim, S. Z. & Park, W. H. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol. Rep. 20, 689–693 (2008).
pubmed: 18695925
pmcid: 18695925
Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).
pubmed: 25628363
pmcid: 4344498
doi: 10.1093/nar/gkv047
Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).
pubmed: 26232224
pmcid: 4522279
doi: 10.1016/j.cell.2015.07.016
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
pmcid: 23104886
doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
pmcid: 24227677
doi: 10.1093/bioinformatics/btt656
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616
Huang, D. W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).
pubmed: 17784955
pmcid: 2375021
doi: 10.1186/gb-2007-8-9-r183