Time to positivity of Klebsiella pneumoniae in blood culture as prognostic indicator for pediatric bloodstream infections.
Blood culture
Bloodstream infection
Children
Klebsiella pneumoniae
Outcomes
Time to positivity
Journal
European journal of pediatrics
ISSN: 1432-1076
Titre abrégé: Eur J Pediatr
Pays: Germany
ID NLM: 7603873
Informations de publication
Date de publication:
Nov 2020
Nov 2020
Historique:
received:
12
11
2019
accepted:
01
05
2020
revised:
25
04
2020
pubmed:
13
5
2020
medline:
24
6
2021
entrez:
13
5
2020
Statut:
ppublish
Résumé
The aim of this study is to explore the prognostic values and optimal cutoff point of time to positivity (TTP) of blood culture in children with Klebsiella pneumoniae (K. pneumoniae) bloodstream infection. Ninety-four children with K. pneumoniae bloodstream infection hospitalized in Children's Hospital of Chongqing Medical University from April 2014 to January 2019 were enrolled retrospectively. TTP and risk factors were determined and analyzed by receiver operating characteristic (ROC) analysis and logistic regression analysis. The standard cutoff point of TTP was 13 h. Patients in early TTP (≤ 13 h) group had significantly higher in-hospital mortality (37.93% vs 6.15%, P = 0.000), higher incidence of septic shock (44.83% vs 6.15%, P = 0.000), higher proportion of PRISM III scores ≥ 10 (48.28% vs 20.00%, P = 0.005), and higher proportion of hypoalbuminemia on admission (44.83% vs 18.46%, P = 0.008). Multivariate analysis indicated PRISM III scores ≥ 10, early TTP, and hypoalbuminemia on admission were independent risk factors of in-hospital mortality (OR 8.36, 95% CI 1.80-38.92, P = 0.007; OR 5.85, 95% CI 1.33-25.61, P = 0.019; OR 5.73, 95% CI 1.30-25.22, P = 0.021, respectively) and septic shock (OR 14.04, 95% CI 2.63-75.38, P = 0.002; OR 11.26, 95% CI 2.10-60.22, P = 0.005; OR 10.27, 95% CI 2.01-52.35, P = 0.005, respectively).Conclusion: Early TTP (TTP ≤ 13 h), PRISM III scores ≥ 10, and hypoalbuminemia on admission appeared to be associated with worse outcomes for K. pneumoniae bloodstream infection children. What is Known: • Klebsiella pneumoniae bloodstream infection is an important cause of infectious disease morbidity and mortality worldwide in children. • Short duration of time to positivity indicated poor clinical outcomes. What is New: • Time to positivity ≤ 13 h, along with PRISM III scores ≥ 10 and hypoalbuminemia on admission, indicated higher in-hospital mortality and incidence of septic shock in Klebsiella pneumoniae bloodstream infection children. • The cut-off point of TTP in this pediatric study was much longer than that reported in adult patients.
Identifiants
pubmed: 32394266
doi: 10.1007/s00431-020-03675-8
pii: 10.1007/s00431-020-03675-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1689-1698Subventions
Organisme : National Key Clinical Specialty Discipline Construction Program of China
ID : 2011-873
Commentaires et corrections
Type : ErratumIn
Références
Laupland KB, Church DL (2014) Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 27(4):647–664. https://doi.org/10.1128/cmr.00002-14
doi: 10.1128/cmr.00002-14
pubmed: 25278570
pmcid: 4187633
Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51(Suppl 1):S81–S87. https://doi.org/10.1086/653053
doi: 10.1086/653053
pubmed: 20597676
Aiken AM, Mturi N, Njuguna P, Mohammed S, Berkley JA, Mwangi I, Mwarumba S, Kitsao BS, Lowe BS, Morpeth SC, Hall AJ, Khandawalla I, Scott JAG (2011) Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet (London, England) 378(9808):2021–2027. https://doi.org/10.1016/s0140-6736(11)61622-x
doi: 10.1016/s0140-6736(11)61622-x
Martin RM, Bachman MA (2018) Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 8:4. https://doi.org/10.3389/fcimb.2018.00004
doi: 10.3389/fcimb.2018.00004
pubmed: 29404282
pmcid: 5786545
Navon-Venezia S, Kondratyeva K, Carattoli A (2017) Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 41(3):252–275. https://doi.org/10.1093/femsre/fux013
doi: 10.1093/femsre/fux013
pubmed: 28521338
Huang W, Qiao F, Zhang Y, Huang J, Deng Y, Li J, Zong Z (2018) In-hospital medical costs of infections caused by carbapenem-resistant Klebsiella pneumoniae. Clin Infect Dis 67(suppl_2):S225–s230. https://doi.org/10.1093/cid/ciy642
doi: 10.1093/cid/ciy642
pubmed: 30423052
Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24(5):743–752. https://doi.org/10.1097/00003246-199605000-00004
doi: 10.1097/00003246-199605000-00004
pubmed: 8706448
Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, Gottesman R, Joffe A, Pfenninger J, Hubert P, Lacroix J, Leclerc F (2003) Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet (London, England) 362(9379):192–197. https://doi.org/10.1016/s0140-6736(03)13908-6
doi: 10.1016/s0140-6736(03)13908-6
Matics TJ, Sanchez-Pinto LN (2017) Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr 171(10):e172352. https://doi.org/10.1001/jamapediatrics.2017.2352
doi: 10.1001/jamapediatrics.2017.2352
pubmed: 28783810
pmcid: 6583375
Henderson H, Luterbach CL, Cober E, Richter SS, Salata RA, Kalayjian RC, Watkins RR, Doi Y, Kaye KS, Evans S, Fowler VG, Bonomo RA, Harris A, Napravnik S, van Duin D (2019) The Pitt Bacteremia Score predicts mortality in non-bacteremic infections. Clin Infect Dis 70:1826–1833. https://doi.org/10.1093/cid/ciz528
doi: 10.1093/cid/ciz528
pmcid: 7156778
Li Y, Li Q, Zhang G, Ma H, Wu Y, Yi Q, Jiang L, Wan J, Suo F, Luo Z (2019) Time to positivity of blood culture is a risk factor for clinical outcomes in Staphylococcus aureus bacteremia children: a retrospective study. BMC Infect Dis 19(1):437. https://doi.org/10.1186/s12879-019-3993-4
doi: 10.1186/s12879-019-3993-4
pubmed: 31101087
pmcid: 6525363
Khatib R, Riederer K, Saeed S, Johnson LB, Fakih MG, Sharma M, Tabriz MS, Khosrovaneh A (2005) Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. Clin Infect Dis 41(5):594–598. https://doi.org/10.1086/432472
doi: 10.1086/432472
pubmed: 16080079
Lai CC, Wang CY, Liu WL, Hou CC, Huang YT, Hsueh PR (2011) Time to blood culture positivity as a predictor of methicillin resistance in Staphylococcus aureus bacteremia. J Infect 62(2):190–191. https://doi.org/10.1016/j.jinf.2010.11.006
doi: 10.1016/j.jinf.2010.11.006
pubmed: 21108966
Hsu MS, Huang YT, Hsu HS, Liao CH (2014) Sequential time to positivity of blood cultures can be a predictor of prognosis of patients with persistent Staphylococcus aureus bacteraemia. Clin Microbiol Infect 20(9):892–898. https://doi.org/10.1111/1469-0691.12608
doi: 10.1111/1469-0691.12608
pubmed: 24612429
Simeon S, Le Moing V, Tubiana S, Duval X, Fournier D, Lavigne JP, Erpelding ML, Gustave CA, Desage S, Chirouze C, Vandenesch F, Tattevin P (2019) Time to blood culture positivity: an independent predictor of infective endocarditis and mortality in patients with Staphylococcus aureus bacteraemia. Clin Microbiol Infect 25(4):481–488. https://doi.org/10.1016/j.cmi.2018.07.015
doi: 10.1016/j.cmi.2018.07.015
pubmed: 30036664
Marra AR, Edmond MB, Forbes BA, Wenzel RP, Bearman GM (2006) Time to blood culture positivity as a predictor of clinical outcome of Staphylococcus aureus bloodstream infection. J Clin Microbiol 44(4):1342–1346. https://doi.org/10.1128/jcm.44.4.1342-1346.2006
doi: 10.1128/jcm.44.4.1342-1346.2006
pubmed: 16597860
pmcid: 1448655
Li Q, Li Y, Yi Q, Suo F, Tang Y, Luo S, Tian X, Zhang G, Chen D, Luo Z (2019) Prognostic roles of time to positivity of blood culture in children with Streptococcus pneumoniae bacteremia. Eur J Clin Microbiol Infect Dis 38(3):457–465. https://doi.org/10.1007/s10096-018-03443-5
doi: 10.1007/s10096-018-03443-5
pubmed: 30680552
Cilloniz C, Ceccato A, de la Calle C, Gabarrus A, Garcia-Vidal C, Almela M, Soriano A, Martinez JA, Marco F, Vila J, Torres A (2017) Time to blood culture positivity as a predictor of clinical outcomes and severity in adults with bacteremic pneumococcal pneumonia. PLoS One 12(8):e0182436. https://doi.org/10.1371/journal.pone.0182436
doi: 10.1371/journal.pone.0182436
pubmed: 28787020
pmcid: 5546626
Peralta G, Roiz MP, Sanchez MB, Garrido JC, Ceballos B, Rodriguez-Lera MJ, Mateos F, De Benito I (2007) Time-to-positivity in patients with Escherichia coli bacteraemia. Clin Microbiol Infect 13(11):1077–1082. https://doi.org/10.1111/j.1469-0691.2007.01817.x
doi: 10.1111/j.1469-0691.2007.01817.x
pubmed: 17727685
Martinez JA, Soto S, Fabrega A, Almela M, Mensa J, Soriano A, Marco F, Jimenez de Anta MT, Vila J (2006) Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol 44(4):1468–1474. https://doi.org/10.1128/jcm.44.4.1468-1474.2006
doi: 10.1128/jcm.44.4.1468-1474.2006
pubmed: 16597878
pmcid: 1448679
Willmann M, Kuebart I, Vogel W, Flesch I, Markert U, Marschal M, Schroppel K, Autenrieth IB, Holzl F, Peter S (2013) Time to positivity as prognostic tool in patients with Pseudomonas aeruginosa bloodstream infection. J Infect 67(5):416–423. https://doi.org/10.1016/j.jinf.2013.06.012
doi: 10.1016/j.jinf.2013.06.012
pubmed: 23817209
Trecarichi EM, Pagano L, Martino B, Candoni A, Di Blasi R, Nadali G, Fianchi L, Delia M, Sica S, Perriello V, Busca A, Aversa F, Fanci R, Melillo L, Lessi F, Del Principe MI, Cattaneo C, Tumbarello M (2016) Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. Am J Hematol 91(11):1076–1081. https://doi.org/10.1002/ajh.24489
doi: 10.1002/ajh.24489
pubmed: 27428072
Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K (2017) Severe congenital neutropenias. Nat Rev Dis Primers 3:17032. https://doi.org/10.1038/nrdp.2017.32
doi: 10.1038/nrdp.2017.32
pubmed: 28593997
pmcid: 5821468
Meites S, Buffone GJ (1989) Pediatric clinical chemistry, references values, 3rd edn. American Association for Clinical Chemistry. American Association for Clinical Chemistry, Washington
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315(8):801–810. https://doi.org/10.1001/jama.2016.0287
doi: 10.1001/jama.2016.0287
pubmed: 26903338
pmcid: 4968574
Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Moller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P (2020) Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med 46(Suppl 1):10–67. https://doi.org/10.1007/s00134-019-05878-6
doi: 10.1007/s00134-019-05878-6
pubmed: 32030529
pmcid: 7095013
Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing: 24th informational supplement. CLSI document M 100-S24. Clinical and Laboratory Standards Institute, Wayne
Connell TG, Rele M, Cowley D, Buttery JP, Curtis N (2007) How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital. Pediatrics 119(5):891–896. https://doi.org/10.1542/peds.2006-0440
doi: 10.1542/peds.2006-0440
pubmed: 17473088
Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35. https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
doi: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
pubmed: 15405679
Faraggi D, Reiser B (2002) Estimation of the area under the ROC curve. Stat Med 21(20):3093–3106. https://doi.org/10.1002/sim.1228
doi: 10.1002/sim.1228
pubmed: 12369084
Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115(7):928–935. https://doi.org/10.1161/circulationaha.106.672402
doi: 10.1161/circulationaha.106.672402
pubmed: 17309939
Liao CH, Lai CC, Hsu MS, Huang YT, Chu FY, Hsu HS, Hsueh PR (2009) Correlation between time to positivity of blood cultures with clinical presentation and outcomes in patients with Klebsiella pneumoniae bacteraemia: prospective cohort study. Clin Microbiol Infect 15(12):1119–1125. https://doi.org/10.1111/j.1469-0691.2009.02720.x
doi: 10.1111/j.1469-0691.2009.02720.x
pubmed: 19392886
Lamy B (2019) Blood culture time-to-positivity: making use of the hidden information. Clin Microbiol Infect 25(3):268–271. https://doi.org/10.1016/j.cmi.2018.12.001
doi: 10.1016/j.cmi.2018.12.001
pubmed: 30580034
Haimi-Cohen Y, Vellozzi EM, Rubin LG (2002) Initial concentration of Staphylococcus epidermidis in simulated pediatric blood cultures correlates with time to positive results with the automated, continuously monitored BACTEC blood culture system. J Clin Microbiol 40(3):898–901. https://doi.org/10.1128/jcm.40.3.898-901.2002
doi: 10.1128/jcm.40.3.898-901.2002
pubmed: 11880412
pmcid: 120233
Bell LM, Alpert G, Campos JM, Plotkin SA (1985) Routine quantitative blood cultures in children with Haemophilus influenzae or Streptococcus pneumoniae bacteremia. Pediatrics 76(6):901–904
pubmed: 3877910
Farris RW, Weiss NS, Zimmerman JJ (2013) Functional outcomes in pediatric severe sepsis: further analysis of the researching severe sepsis and organ dysfunction in children: a global perspective trial. Pediatr Crit Care Med 14(9):835–842. https://doi.org/10.1097/PCC.0b013e3182a551c8
doi: 10.1097/PCC.0b013e3182a551c8
pubmed: 24108117
pmcid: 4080839
Soeters PB, Wolfe RR, Shenkin A (2019) Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 43(2):181–193. https://doi.org/10.1002/jpen.1451
doi: 10.1002/jpen.1451
pubmed: 30288759
Akirov A, Masri-Iraqi H, Atamna A, Shimon I (2017) Low albumin levels are associated with mortality risk in hospitalized patients. Am J Med 130(12):1465.e1411–1465.e1419. https://doi.org/10.1016/j.amjmed.2017.07.020
doi: 10.1016/j.amjmed.2017.07.020