Peroxisomal targeting of a protein phosphatase type 2C via mitochondrial transit.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 05 2020
12 05 2020
Historique:
received:
12
07
2019
accepted:
16
04
2020
entrez:
14
5
2020
pubmed:
14
5
2020
medline:
1
9
2020
Statut:
epublish
Résumé
Correct intracellular distribution of proteins is critical for the function of eukaryotic cells. Certain proteins are targeted to more than one cellular compartment, e.g. to mitochondria and peroxisomes. The protein phosphatase Ptc5 from Saccharomyces cerevisiae contains an N-terminal mitochondrial presequence followed by a transmembrane domain, and has been detected in the mitochondrial intermembrane space. Here we show mitochondrial transit of Ptc5 to peroxisomes. Translocation of Ptc5 to peroxisomes depended both on the C-terminal peroxisomal targeting signal (PTS1) and N-terminal cleavage by the mitochondrial inner membrane peptidase complex. Indirect targeting of Ptc5 to peroxisomes prevented deleterious effects of its phosphatase activity in the cytosol. Sorting of Ptc5 involves simultaneous interaction with import machineries of both organelles. We identify additional mitochondrial proteins with PTS1, which localize in both organelles and can increase their physical association. Thus, a tug-of-war-like mechanism can influence the interaction and communication of two cellular compartments.
Identifiants
pubmed: 32398688
doi: 10.1038/s41467-020-16146-3
pii: 10.1038/s41467-020-16146-3
pmc: PMC7217942
doi:
Substances chimiques
Mitochondrial Proteins
0
Protein Sorting Signals
0
Saccharomyces cerevisiae Proteins
0
PTC5 protein, S cerevisiae
EC 3.1.3.16
Protein Phosphatase 2C
EC 3.1.3.16
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2355Références
Smith, J. J. & Aitchison, J. D. Peroxisomes take shape. Nat. Rev. Mol. Cell Biol. 14, 803–817 (2013).
pubmed: 24263361
pmcid: 4060825
Poirier, Y., Antonenkov, V. D., Glumoff, T. & Hiltunen, J. K. Peroxisomal β-oxidation—a metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763, 1413–1426 (2006).
pubmed: 17028011
Francisco, T. et al. Protein transport into peroxisomes: knowns and unknowns. BioEssays 39, 1700047 (2017).
Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J. & Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664 (1989).
pubmed: 2654139
Rucktäschel, R., Girzalsky, W. & Erdmann, R. Protein import machineries of peroxisomes. Biochim. Biophys. Acta - Biomembr. 1808, 892–900 (2011).
Brocard, C. & Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta 1763, 1565–1573 (2006).
pubmed: 17007944
Gardner, B. M., Chowdhury, S., Lander, G. C. & Martin, A. The Pex1/Pex6 complex is a heterohexameric AAA + motor with alternating and highly coordinated subunits. J. Mol. Biol. 427, 1375–1388 (2015).
pubmed: 25659908
pmcid: 4355278
Ben-Menachem, R., Tal, M., Shadur, T. & Pines, O. A third of the yeast mitochondrial proteome is dual localized: a question of evolution. Proteomics 11, 4468–4476 (2011).
pubmed: 21910249
Yogev, O. & Pines, O. Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim. Biophys. Acta 1808, 1012–1020 (2011).
pubmed: 20637721
Freitag, J., Ast, J. & Bölker, M. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485, 522–525 (2012).
pubmed: 22622582
Ast, J., Stiebler, A. C., Freitag, J. & Bölker, M. Dual targeting of peroxisomal proteins. Front. Physiol. 4, 297 (2013).
pubmed: 24151469
pmcid: 3798809
Schueren, F. et al. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3, e03640 (2014).
pubmed: 25247702
pmcid: 4359377
Stiebler, A. C. et al. Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLOS Genet. 10, 10 (2014).
Nötzel, C., Lingner, T., Klingenberg, H. & Thoms, S. Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 17, 1110–1124 (2016).
pubmed: 27392156
Gey, U., Czupalla, C., Hoflack, B., Rödel, G. & Krause-Buchholz, U. Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J. Biol. Chem. 283, 9759–9767 (2008).
pubmed: 18180296
Guo, X., Niemi, N. M., Coon, J. J. & Pagliarini, D. J. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J. Biol. Chem. 292, 11751–11759 (2017).
pubmed: 28539364
pmcid: 5512070
Vögtle, F.-N. et al. Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteom. 11, 1840–1852 (2012).
Nunnari, J., Fox, T. D. & Walter, P. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262, 1997–2004 (1993).
pubmed: 8266095
Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003).
pubmed: 14576278
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).
pubmed: 15334558
Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245 (1989).
pubmed: 2547163
Wroblewska, J. P. et al. Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins. Biochim. Biophys. Acta Mol. Cell Res. 1864, 1656–1667 (2017).
pubmed: 28552664
Johnson, A. et al. COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae. J. Biol. Chem. 280, 31397–31404 (2005).
pubmed: 16027161
Regev-Rudzki, N., Karniely, S., Ben-Haim, N. N. & Pines, O. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol. Biol. Cell 16, 4163–4171 (2005).
pubmed: 15975908
pmcid: 1196327
Yogev, O. et al. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol. 8, e1000328 (2010).
pubmed: 20231875
pmcid: 2834712
Bragoszewski, P. et al. Retro-translocation of mitochondrial intermembrane space proteins. Proc. Natl Acad. Sci. USA 112, 7713–7718 (2015).
pubmed: 26056291
Rothblatt, J. A., Deshaies, R. J., Sanders, S. L., Daum, G. & Schekman, R. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J. Cell Biol. 109, 2641–2652 (1989).
pubmed: 2687285
Jung, S., Marelli, M., Rachubinski, R. A., Goodlett, D. R. & Aitchison, J. D. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J. Biol. Chem. 285, 6739–6749 (2010).
pubmed: 20026609
Al-Saryi, N. A. et al. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci. Rep. 7, 11868 (2017).
pubmed: 28928432
pmcid: 5605654
Kinoshita, E., Kinoshita-Kikuta, E. & Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 4, 1513 (2009).
pubmed: 19798084
Lee, Y. J., Jeschke, G. R., Roelants, F. M., Thorner, J. & Turk, B. E. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol. Cell. Biol. 32, 4705–4717 (2012).
pubmed: 22988299
pmcid: 3486180
Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).
pubmed: 28301740
Morgenstern, M. et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852 (2017).
pubmed: 28658629
pmcid: 5494306
Broadley, S. A., Demlow, C. M. & Fox, T. D. Peripheral mitochondrial inner membrane protein, Mss2p, required for export of the mitochondrially coded Cox2p C tail in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 7663–7672 (2001).
pubmed: 11604502
pmcid: 99937
Fan, J., Li, X., Issop, L., Culty, M. & Papadopoulos, V. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis. Mol. Endocrinol. 30, 763–782 (2016).
pubmed: 27167610
pmcid: 5426581
Schrader, M., Costello, J., Godinho, L. F. & Islinger, M. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis. 38, 681–702 (2015).
pubmed: 25687155
Fransen, M., Lismont, C. & Walton, P. The peroxisome-mitochondria connection: how and why? Int. J. Mol. Sci. 18, 1126 (2017).
pmcid: 5485950
Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).
pubmed: 12499366
Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005).
Motley, A. M., Ward, G. P. & Hettema, E. H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J. Cell Sci. 121, 1633–1640 (2008).
pubmed: 18445678
pmcid: 2579327
Okreglak, V. & Walter, P. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl Acad. Sci. USA 111, 8019–8024 (2014).
pubmed: 24821790
Weir, N. R., Kamber, R. A., Martenson, J. S. & Denic, V. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. Elife 6, e28507 (2017).
pubmed: 28906250
pmcid: 5633344
Castro, I. G. et al. A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 19, 229–242 (2018).
pubmed: 29364559
pmcid: 5888202
Covill-Cooke, C. et al. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep. 21, e49865 (2020).
pubmed: 31894645
pmcid: 7001505
Sugiura, A., Mattie, S., Prudent, J. & McBride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).
pubmed: 28146471
Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).
pubmed: 19556461
pmcid: 2933203
Bohnert, M. & Schuldiner, M. Stepping outside the comfort zone of membrane contact site research. Nat. Rev. Mol. Cell Biol. 19, 483–484 (2018).
pubmed: 29765158
pmcid: 6287737
Costello, J. L. et al. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J. Cell Biol. 216, 331–342 (2017).
pubmed: 28108524
pmcid: 5294785
Hua, R. et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J. Cell Biol. 216, 367–377 (2017).
pubmed: 28108526
pmcid: 5294787
Castro, I. G., Schuldiner, M. & Zalckvar, E. Mind the organelle gap-peroxisome contact sites in disease. Trends Biochem. Sci. 43, 199–210 (2018).
pubmed: 29395653
pmcid: 6252078
Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 1–12 (2018).
Chang, C.-L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218(8), 2583–2599 (2019).
pubmed: 31227594
pmcid: 6683741
Shai, N. et al. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat. Commun. 9, 1761 (2018).
pubmed: 29720625
pmcid: 5932058
Baudin, A., Ozier-kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329 (1993).
pubmed: 8341614
pmcid: 309783
Schiestl, R. H. R. & Gietz, R. D. R. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16(5), 339–346 (1989).
pubmed: 2692852
Renicke, C., Allmann, A. K., Lutz, A. P., Heimerl, T. & Taxis, C. The mitotic exit network regulates spindle pole body selection during sporulation of Saccharomyces cerevisiae. Genetics 206, 919–937 (2017).
pubmed: 28450458
pmcid: 5499195
Cramer, J., Effelsberg, D., Girzalsky, W. & Erdmann, R. Small-scale purification of peroxisomes for analytical applications. Cold Spring Harb. Protoc. 9, prot083717 (2015).
Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000).
pubmed: 10861908
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 5554542
pmcid: 5554542
Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93, 97–102 (1982).
pubmed: 7068762
Mortz, E., Krogh, T. N., Vorum, H. & Görg, A. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1, 1359–1363 (2001).
pubmed: 11922595
Lord, S., Velle K. B., Mullins R. and Fritz-Laylin L. K. If your P value looks too good to be true, it probably is: Communicating reproducibility and variability in cell biology. Preprint at https://arxiv.org/abs/1911.03509 (2019).
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A. & Eisenhaber, F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J. Mol. Biol. 328, 581–592 (2003).
pubmed: 12706718