Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory.
Droseraceae
WRKY transcription factors
gene loss
jasmonate signaling
neofunctionalization
tissue-specific genes
transposon classification
whole-genome duplications
Journal
Current biology : CB
ISSN: 1879-0445
Titre abrégé: Curr Biol
Pays: England
ID NLM: 9107782
Informations de publication
Date de publication:
22 06 2020
22 06 2020
Historique:
received:
07
02
2020
revised:
16
04
2020
accepted:
21
04
2020
pubmed:
16
5
2020
medline:
10
8
2021
entrez:
16
5
2020
Statut:
ppublish
Résumé
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
Identifiants
pubmed: 32413308
pii: S0960-9822(20)30567-4
doi: 10.1016/j.cub.2020.04.051
pmc: PMC7308799
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2312-2320.e5Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Interests The authors declare no competing interests.
Références
Nature. 2019 Oct;574(7780):679-685
pubmed: 31645766
Nucleic Acids Res. 2012 Apr;40(7):e49
pubmed: 22217600
Nucleic Acids Res. 2018 Mar 16;46(5):2699
pubmed: 29425356
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4822-4827
pubmed: 28416693
Plant Cell. 2013 Jul;25(7):2699-713
pubmed: 23897923
Mol Plant. 2012 Sep;5(5):1157-9
pubmed: 22859733
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
pubmed: 28387841
Plant Biol (Stuttg). 2014 Sep;16(5):982-7
pubmed: 24499476
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8
pubmed: 21187386
Genome Biol. 2005;6(4):R33
pubmed: 15833120
New Phytol. 2018 Jan;217(2):855-870
pubmed: 28944472
Genome Biol. 2015 Aug 06;16:157
pubmed: 26243257
Nature. 2002 Feb 28;415(6875):977-83
pubmed: 11875555
Bioinformatics. 2011 Apr 1;27(7):1017-8
pubmed: 21330290
Plant Genome. 2016 Mar;9(1):
pubmed: 27898770
Proteins. 2016 Oct;84(10):1517-33
pubmed: 27353064
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Cell Res. 2017 Nov;27(11):1327-1340
pubmed: 28994416
Bioinformatics. 2012 Jan 15;28(2):279-81
pubmed: 22080468
Bioinformatics. 2014 May 1;30(9):1236-40
pubmed: 24451626
Trends Plant Sci. 2018 Mar;23(3):220-234
pubmed: 29336976
BMC Bioinformatics. 2010 Apr 01;11:165
pubmed: 20356413
Genome Res. 2016 Jun;26(6):812-25
pubmed: 27197216
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Plant Biol (Stuttg). 2006 Nov;8(6):821-30
pubmed: 17066364
Nat Ecol Evol. 2017 Feb 06;1(3):59
pubmed: 28812732
Proc Biol Sci. 2013 Mar 20;280(1759):20130228
pubmed: 23516244
Curr Biol. 2013 Sep 9;23(17):1649-57
pubmed: 23954430
Genome Res. 2008 Jan;18(1):188-96
pubmed: 18025269
Elife. 2014 Sep 23;3:
pubmed: 25247700
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Plant J. 2012 Jul;71(2):303-13
pubmed: 22417315
Plant Cell. 2009 Nov;21(11):3554-66
pubmed: 19934380
Nature. 2013 Jun 6;498(7452):94-8
pubmed: 23665961
Nat Rev Genet. 2002 May;3(5):329-41
pubmed: 11988759
Bioinform Biol Insights. 2014 Dec 21;8:209-14
pubmed: 25574136
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nature. 2014 Apr 24;508(7497):546-9
pubmed: 24670640
BMC Bioinformatics. 2006 Feb 09;7:62
pubmed: 16469098
Dev Cell. 2017 Oct 23;43(2):172-185.e5
pubmed: 29065308
New Phytol. 2018 Jan;217(2):836-854
pubmed: 28892163
Nucleic Acids Res. 2018 Jan 4;46(D1):D260-D266
pubmed: 29140473
Nucleic Acids Res. 2019 Dec 2;47(21):10994-11006
pubmed: 31584084
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nucleic Acids Res. 2016 Jul 8;44(12):e113
pubmed: 27131372
J Exp Bot. 2014 Feb;65(2):755-66
pubmed: 24420576
PLoS One. 2012;7(11):e47768
pubmed: 23185243
PLoS One. 2014 Nov 19;9(11):e112963
pubmed: 25409509
Curr Biol. 2016 Feb 8;26(3):286-95
pubmed: 26804557
Science. 1992 Sep 11;257(5076):1491-5
pubmed: 1523408
Mol Biol Evol. 2017 Dec 1;34(12):3267-3278
pubmed: 29029342
Genes Dev. 2002 May 1;16(9):1139-49
pubmed: 12000796
Plant Cell. 2008 Jul;20(7):1984-2000
pubmed: 18641266
BMC Genomics. 2013 Jul 15;14:476
pubmed: 23855885
Chromosome Res. 2005;13(8):827-34
pubmed: 16331414