Developmental mechanisms underlying webbed foot morphological diversity in waterbirds.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 05 2020
15 05 2020
Historique:
received:
22
01
2020
accepted:
20
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The webbed feet of waterbirds are morphologically diverse and classified into four types: the palmate foot, semipalmate foot, totipalmate foot, and lobate foot. To understand the developmental mechanisms underlying this morphological diversity, we conducted a series of comparative analyses. Ancestral state reconstruction based on phylogeny assumed that the lobate feet possessed by the common coot and little grebe arose independently, perhaps through distinct developmental mechanisms. Gremlin1, which encodes a bone morphogenetic protein (BMP) antagonist and inhibits interdigital cell death (ICD) in the foot plate of avian embryos, remained expressed in the interdigital tissues of webbed feet in the duck, common coot, little grebe, and great cormorant. Differences in Gremlin1 expression pattern and proliferating cell distribution pattern in the toe tissues of the common coot and little grebe support the convergent evolution of lobate feet. In the totipalmate-footed great cormorant, Gremlin1 was expressed in all interdigital tissues at St. 31, but its expression disappeared except along the toes by St. 33. The webbing of the cormorant's totipalmate foot and duck's palmate foot may have risen from distinct developmental mechanisms.
Identifiants
pubmed: 32415088
doi: 10.1038/s41598-020-64786-8
pii: 10.1038/s41598-020-64786-8
pmc: PMC7229147
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8028Références
Raikow R. J. Locomotor system in Form and Function in Birds, Vol. 3 (eds. King, A. S, McLelland, J.) 57–147 (Academic Press, 1985).
Lovette, I. J. & Fitzpatrick, J. W. Handbook of Bird Biology. Third Edition. (Wiley-Blackwell, 2016).
Johansson, L. C. & Norberg, U. M. Asymmetric toes aid underwater swimming. Nature 407, 582–583 (2000).
doi: 10.1038/35036689
Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).
doi: 10.1038/nature15697
Johnsgard, P. A. Handbook of Waterfowl Behavior: Tribe Anseranatini (Magpie Goose). (Cornell University Press, 1965).
Hurlé, J. M. & Climent, V. The regression of the interdigital tissue in Rallidae avian embryos (Fulika atra and Gallinula chloropus). Arch. Biol (Bruxelles) 98, 299–316 (1987).
van Tuinen, M., Butvill, D. B., Kirsch, J. A. W. & Hedges, S. B. Convergence and divergence in the evolution of aquatic birds. Proc. R. Soc. B Biol. Sci. 268, 1345–1350 (2001).
doi: 10.1098/rspb.2001.1679
Fain, M. G. & Houde, P. Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves). BMC Evol. Biol. 7, 35 (2007).
doi: 10.1186/1471-2148-7-35
Hedges, S. B. & Sibley, C. G. Molecules vs. morphology in avian evolution: the case of the ‘pelecaniform’ birds. Proc. Natl. Acad. Sci. USA 91, 9861–9865 (1994).
doi: 10.1073/pnas.91.21.9861
Merino, R. et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126, 5515–5522 (1999).
pubmed: 10556075
Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).
doi: 10.1016/j.tree.2008.06.013
Botelho, J. F., Smith-Paredes, D., Nunez-Leon, D., Soto-Acuna, S. & Vargas, A. O. The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes. Proc. R. Soc. B Biol. Sci. 281, 20140765, https://doi.org/10.1098/rspb.2014.0765 (2014).
doi: 10.1098/rspb.2014.0765
Botelho, J. F. et al. Skeletal plasticity in response to embryonic muscular activity underlies the development and evolution of the perching digit of birds. Sci. Rep. 5, 9840, https://doi.org/10.1038/srep09840 (2015).
doi: 10.1038/srep09840
Zwilling, E. Interaction between ectoderm and mesoderm in duck‐chicken limb bud chimaeras. J. Exp. Zool. 142, 521–532 (1959).
doi: 10.1002/jez.1401420124
Hurlé, J. M. & Gañan, Y. Interdigital tissue chondrogenesis induced by surgical removal of the ectoderm in the embryonic chick leg bud. J. Embryol. Exp. Morphol. 94, 231–44 (1986).
pubmed: 3760758
Hurlé, J. M., Ros, M. A., Climent, V. & Garcia-Martinez, V. Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc. Res. Tech. 34, 236–246 (1996).
doi: 10.1002/(SICI)1097-0029(19960615)34:3<236::AID-JEMT6>3.0.CO;2-N
Suzuki, T., Hasso, S. M. & Fallon, J. F. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc. Natl. Acad. Sci. USA 105, 4185–4190 (2008).
doi: 10.1073/pnas.0707899105
Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).
doi: 10.1002/jmor.1050880104
Fernández-Terán, M. A., Hinchliffe, J. R. & Ros, M. A. Birth and death of cells in limb development: a mapping study. Dev. Dyn. 235, 2521–2537 (2006).
doi: 10.1002/dvdy.20916
Chimal-Monroy, J. et al. Molecular control of cell differentiation and programmed cell death during digit development. IUBMB Life 63, 899–906 (2011).
doi: 10.1002/iub.563
Yamasaki, M. & Tonosaki, A. Developmental stages of the society finch, Lonchura striata var. dornestica. Dev. Growth Differ. 30, 515–542 (1988).
doi: 10.1111/j.1440-169X.1988.00515.x
Carril, J. & Tambussi, C. P. Development of the superaltricial monk parakeet (Aves, Psittaciformes): embryo staging, growth, and heterochronies. Anat. Rec. 298, 1836–1847 (2015).
doi: 10.1002/ar.23256
Yokouchi, Y. et al. BMP-2/−4 mediate programmed cell death in chicken limb buds. Development 122, 3725–3734 (1996).
pubmed: 9012494
Merino, R. et al. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev. Biol. 200, 35–45 (1998).
doi: 10.1006/dbio.1998.8946
Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 4019–4032 (1998).
pubmed: 9735363
Hernández-Martinez, R., Castro-Obregon, S. & Covarrubias, L. Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid. Development 136, 3669–3678 (2009).
doi: 10.1242/dev.041954
Young, J. J. & Tabin, C. J. Saunders’ s framework for understanding limb development as a platform for investigating limb evolution. Dev. Biol. 429, 401–408 (2016).
doi: 10.1016/j.ydbio.2016.11.005
Weatherbee, S. D., Behringer, R. R., Rasweiler, J. J. & Niswander, L. A. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc. Natl. Acad. Sci. USA 103, 15103–15107 (2006).
doi: 10.1073/pnas.0604934103
Cooper, L. N. et al. Review and experimental evaluation of the embryonic development and evolutionary history of flipper development and hyperphalangy in dolphins (Cetacea: Mammalia). Genesis 56, 1–14, https://doi.org/10.1002/dvg.23076 (2018).
doi: 10.1002/dvg.23076
Gañan, Y., Macias, D., Basco, R. D., Merino, R. & Hurle, J. M. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod. Dev. Biol. 196, 33–41 (1998).
doi: 10.1006/dbio.1997.8843
Hartmann, C. & Tabin, C. J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341–351 (2001).
doi: 10.1016/S0092-8674(01)00222-7
Pitsillides, A. & Ashhurst, D. E. A critical evaluation of specific aspects of joint development. Dev. Dyn. 237, 2284–2294 (2008).
doi: 10.1002/dvdy.21654
Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).
doi: 10.1126/science.1253451
Kimball, R. T. et al. A Phylogenomic supertree of birds. Diversity 11, 109 (2019).
doi: 10.3390/d11070109
Gould, S. J. Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189–212 (1970).
doi: 10.1007/BF00137351
Wake, D. B., Wake, M. H. & Specht, C. D. Homoplasy: from detecting pattern and mechanism of evolution. Science 331, 1032–1035 (2011).
doi: 10.1126/science.1188545
Ksepka, D. T., Stidham, T. A. & Williamson, T. E. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. Proc. Natl. Acad. Sci. USA 114, 8047–8052 (2017).
doi: 10.1073/pnas.1700188114
Maddison, W. P., & Maddison, D. R. Mesquite: a modular system for evolutionary analysis, version 1.0. http://www.mesquiteproject.org (2003).
van Tyne, J. & Berger, A. J. Fundamentals of Ornithology. Second edition pp 808. (John Wiley & Sons, 1975).
García-R, J. C., Gibb, G. C. & Trewick, S. A. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). PLoS One 9, e109635, https://doi.org/10.1371/journal.pone.0109635 (2014).
doi: 10.1371/journal.pone.0109635
pubmed: 25291147
pmcid: 4188725
García-R, J. C., Gibb, G. C. & Trewick, S. A. Deep global evolutionary radiation in birds: diversification and trait evolution in the cosmopolitan bird family Rallidae. Mol. Phylogenet. Evol. 81, 96–108 (2015).
doi: 10.1016/j.ympev.2014.09.008
Wang, M. et al. The oldest record of ornithuromorpha from the early cretaceous of China. Nat. Commun. 6, 6987, https://doi.org/10.1038/ncomms7987 (2015).
doi: 10.1038/ncomms7987
pubmed: 25942493
pmcid: 5426517
Tanaka, T., Kobayashi, Y., Kurihara, K., Fiorillo, A. R. & Kano, M. The oldest Asian hesperornithiform from the Upper Cretaceous of Japan, and the phylogenetic reassessment of Hesperornithiformes. J. Syst. Palaeontol. 16, 689–709 (2017).
doi: 10.1080/14772019.2017.1341960
Hu, C. et al. The mitochondrial genome of pin-tailed snipe Gallinago stenura, and its implications for the phylogeny of Charadriiformes. PLoS One 12, e0175244 (2017).
doi: 10.1371/journal.pone.0175244
Fain, M. G. & Houde, P. Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves). BMC. Evol. Biol. 7, 35 (2007).
doi: 10.1186/1471-2148-7-35
Sato, T. & Suganuma, M. Correlation between the entropy for a given binary format image and the psychological quantity from verbal expression. Trans. Japan Soc. Kansei Eng. 12, 499–509 (2013). (in Japanese with English Abstract).
Vala, M. H. J. & Bax, A. A Review on Otsu Image Segmentation Algorithm. Int. J. Adv. Res. Comput. Eng. Technol. 2, 387–389 (2013).
Van Rossum, G., Drake, F. L. & Kuchling, A. Python tutorial. Lincoln, Neb.: Open Docs Library. (1999).
Evans H.E. Avian anatomy in Handbook of Bird Biology. Third Edition. (eds. Lovette, I.J. & Fitzpatrick, J.W.) 169-213 (Wiley-Blackwell, 2016).