Homoplastic single nucleotide polymorphisms contributed to phenotypic diversity in Mycobacterium tuberculosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 05 2020
Historique:
received: 21 11 2019
accepted: 20 04 2020
entrez: 17 5 2020
pubmed: 18 5 2020
medline: 15 12 2020
Statut: epublish

Résumé

Homoplastic mutations are mutations independently occurring in different clades of an organism. The homoplastic changes may be a result of convergence evolution due to selective pressures. Reports on the analysis of homoplastic mutations in Mycobacterium tuberculosis have been limited. Here we characterized the distribution of homoplastic single nucleotide polymorphisms (SNPs) among genomes of 1,170 clinical M. tuberculosis isolates. They were present in all functional categories of genes, with pe/ppe gene family having the highest ratio of homoplastic SNPs compared to the total SNPs identified in the same functional category. Among the pe/ppe genes, the homoplastic SNPs were common in a relatively small number of homologous genes, including ppe18, the protein of which is a component of a promising candidate vaccine, M72/AS01E. The homoplastic SNPs in ppe18 were particularly common among M. tuberculosis Lineage 1 isolates, suggesting the need for caution in extrapolating the results of the vaccine trial to the population where L1 is endemic in Asia. As expected, homoplastic SNPs strongly associated with drug resistance. Most of these mutations are already well known. However, a number of novel mutations associated with streptomycin resistance were identified, which warrants further investigation. A SNP in the intergenic region upstream of Rv0079 (DATIN) was experimentally shown to increase transcriptional activity of the downstream gene, suggesting that intergenic homoplastic SNPs should have effects on the physiology of the bacterial cells. Our study highlights the potential of homoplastic mutations to produce phenotypic changes. Under selective pressure and during interaction with the host, homoplastic mutations may confer advantages to M. tuberculosis and deserve further characterization.

Identifiants

pubmed: 32415151
doi: 10.1038/s41598-020-64895-4
pii: 10.1038/s41598-020-64895-4
pmc: PMC7229016
doi:

Substances chimiques

5' Untranslated Regions 0
Antigens, Bacterial 0
Epitopes, T-Lymphocyte 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8024

Références

Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264, 6–24 (2015).
pmcid: 4339235 doi: 10.1111/imr.12264 pubmed: 4339235
Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6, e311 (2008).
pmcid: 2602723 doi: 10.1371/journal.pbio.0060311 pubmed: 2602723
Smith, N. H., Hewinson, R. G., Kremer, K., Brosch, R. & Gordon, S. V. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7, 537–544 (2009).
doi: 10.1038/nrmicro2165
Namouchi, A., Didelot, X., Schock, U., Gicquel, B. & Rocha, E. P. After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 22, 721–734 (2012).
pmcid: 3317154 doi: 10.1101/gr.129544.111 pubmed: 3317154
Supply, P. et al. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47, 529–538 (2003).
doi: 10.1046/j.1365-2958.2003.03315.x
Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103, 2869–2873 (2006).
doi: 10.1073/pnas.0511240103
Gagneux, S. & Small, P. M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7, 328–337 (2007).
doi: 10.1016/S1473-3099(07)70108-1
Romagnoli, A. et al. Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1beta-induced autophagy. Cell Death Dis 9, 624 (2018).
pmcid: 5967325 doi: 10.1038/s41419-018-0640-8 pubmed: 5967325
Sarkar, R., Lenders, L., Wilkinson, K. A., Wilkinson, R. J. & Nicol, M. P. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One 7, e43170 (2012).
pmcid: 3420893 doi: 10.1371/journal.pone.0043170 pubmed: 3420893
Yuen, C. M., Kurbatova, E. V., Click, E. S., Cavanaugh, J. S. & Cegielski, J. P. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance. PLoS One 8, e83006 (2013).
pmcid: 3871645 doi: 10.1371/journal.pone.0083006 pubmed: 3871645
Gonzalo-Asensio, J. et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci USA 111, 11491–11496 (2014).
doi: 10.1073/pnas.1406693111
Mikheecheva, N. E., Zaychikova, M. V., Melerzanov, A. V. & Danilenko, V. N. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages. Genome Biol Evol 9, 887–899 (2017).
pmcid: 5381574 doi: 10.1093/gbe/evx053 pubmed: 5381574
Rose, G. et al. Mapping of genotype-phenotype diversity among clinical isolates of mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 5, 1849–1862 (2013).
pmcid: 3814196 doi: 10.1093/gbe/evt138 pubmed: 3814196
Doolittle, R. F. Convergent evolution: the need to be explicit. Trends Biochem Sci 19, 15–18 (1994).
doi: 10.1016/0968-0004(94)90167-8
Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45, 1183–1189 (2013).
pmcid: 3887553 doi: 10.1038/ng.2747 pubmed: 3887553
Grandjean, L. et al. Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS One 12, e0189838 (2017).
pmcid: 5744980 doi: 10.1371/journal.pone.0189838 pubmed: 5744980
Hazbon, M. H. et al. Convergent evolutionary analysis identifies significant mutations in drug resistance targets of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52, 3369–3376 (2008).
pmcid: 2533473 doi: 10.1128/AAC.00309-08 pubmed: 2533473
Mortimer, T. D., Weber, A. M. & Pepperell, C. S. Signatures of Selection at Drug Resistance Loci in Mycobacterium tuberculosis. mSystems 3 (2018).
Nebenzahl-Guimaraes, H. et al. Transmissible Mycobacterium tuberculosis Strains Share Genetic Markers and Immune Phenotypes. Am J Respir Crit Care Med 195, 1519–1527 (2017).
pmcid: 5803666 doi: 10.1164/rccm.201605-1042OC pubmed: 5803666
Ruesen, C. et al. Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis. BMC Genomics 19, 122 (2018).
pmcid: 5800017 doi: 10.1186/s12864-018-4498-z pubmed: 5800017
Ajawatanawong, P. et al. A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages. Sci Rep 9, 13718 (2019).
pmcid: 6757101 doi: 10.1038/s41598-019-50078-3 pubmed: 6757101
Fishbein, S., van Wyk, N., Warren, R. M. & Sampson, S. L. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 96, 901–916 (2015).
doi: 10.1111/mmi.12981
Phelan, J. E. et al. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 17, 151 (2016).
pmcid: 4770551 doi: 10.1186/s12864-016-2467-y pubmed: 4770551
Nair, S. et al. The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 183, 6269–6281 (2009).
doi: 10.4049/jimmunol.0901367
Su, H. et al. Mycobacterium tuberculosis PPE60 antigen drives Th1/Th17 responses via Toll-like receptor 2-dependent maturation of dendritic cells. J Biol Chem 293, 10287–10302 (2018).
pmcid: 6028961 doi: 10.1074/jbc.RA118.001696 pubmed: 6028961
Xu, Y. et al. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. J Mol Med (Berl) 93, 645–662 (2015).
doi: 10.1007/s00109-014-1243-1
Chen, J. et al. Novel recombinant RD2- and RD11-encoded Mycobacterium tuberculosis antigens are potential candidates for diagnosis of tuberculosis infections in BCG-vaccinated individuals. Microbes Infect 11, 876–885 (2009).
doi: 10.1016/j.micinf.2009.05.008
Lindestam Arlehamn, C. S. et al. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9, e1003130 (2013).
pmcid: 3554618 doi: 10.1371/journal.ppat.1003130 pubmed: 3554618
Van Der Meeren, O. et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med 379, 1621–1634 (2018).
doi: 10.1056/NEJMoa1803484
Hebert, A. M. et al. DNA polymorphisms in the pepA and ppe18 genes among clinical strains of Mycobacterium tuberculosis: implications for vaccine efficacy. Infect Immun 75, 5798–5805 (2007).
pmcid: 2168324 doi: 10.1128/IAI.00335-07 pubmed: 2168324
Homolka, S., Ubben, T. & Niemann, S. High Sequence Variability of the ppe18 Gene of Clinical Mycobacterium tuberculosis Complex Strains Potentially Impacts Effectivity of Vaccine Candidate M72/AS01E. PLoS One 11, e0152200 (2016).
pmcid: 4806982 doi: 10.1371/journal.pone.0152200 pubmed: 4806982
Windish, H. P. et al. Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 29, 7842–7848 (2011).
pmcid: 3190072 doi: 10.1016/j.vaccine.2011.07.094 pubmed: 21816196
Brennan, M. J. The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination. Infect Immun 85 (2017).
Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6, 95 (2006).
pmcid: 1660551 doi: 10.1186/1471-2148-6-95 pubmed: 17105670
Akhter, Y., Ehebauer, M. T., Mukhopadhyay, S. & Hasnain, S. E. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? Biochimie 94, 110–116 (2012).
doi: 10.1016/j.biochi.2011.09.026 pubmed: 22005451 pmcid: 22005451
Mukherjee, S., Huda, S. & Sinha Babu, S. P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol, e12771 (2019).
Ben-Ali, M., Barbouche, M. R., Bousnina, S., Chabbou, A. & Dellagi, K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 11, 625–626 (2004).
pmcid: 404573 doi: 10.1128/CDLI.11.3.625-626.2004 pubmed: 404573
Hu, L., Tao, H., Tao, X., Tang, X. & Xu, C. TLR2 Arg753Gln Gene Polymorphism Associated with Tuberculosis Susceptibility: An Updated Meta-Analysis. Biomed Res Int 2019, 2628101 (2019).
pmcid: 6348792 pubmed: 30733958
Pattabiraman, G., Panchal, R. & Medvedev, A. E. The R753Q polymorphism in Toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment to TLR2. J Biol Chem 292, 10685–10695 (2017).
pmcid: 5481573 doi: 10.1074/jbc.M117.784470 pubmed: 5481573
Mortier, M. C., Jongert, E., Mettens, P. & Ruelle, J. L. Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens. BMC Immunol 16, 63 (2015).
pmcid: 4619029 doi: 10.1186/s12865-015-0119-7 pubmed: 4619029
McNamara, L. A., He, Y. & Yang, Z. Using epitope predictions to evaluate efficacy and population coverage of the Mtb72f vaccine for tuberculosis. BMC Immunol 11, 18 (2010).
pmcid: 2862017 doi: 10.1186/1471-2172-11-18 pubmed: 2862017
Gong, W., Liang, Y. & Wu, X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 14, 1697–1716 (2018).
pmcid: 6067889 doi: 10.1080/21645515.2018.1458806 pubmed: 6067889
Danilenk, V. N. Developing a technological platform to createinnovative TB drugs active against multidrug-resistant strains. RussAcad Sci 89, 144–150 (2019).
Newton-Foot, M. & Gey van Pittius, N. C. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 93, 60–74 (2013).
doi: 10.1016/j.tube.2012.08.003
Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48, 833–843 (2003).
pmcid: 1992516 doi: 10.1046/j.1365-2958.2003.03474.x pubmed: 1992516
Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198, 705–713 (2003).
pmcid: 2194188 doi: 10.1084/jem.20030205 pubmed: 2194188
Kumar, A. et al. Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, ‘dormancy associated translation inhibitor (DATIN)’. PLoS One 7, e38709 (2012).
pmcid: 3374827 doi: 10.1371/journal.pone.0038709 pubmed: 3374827
Kumar, A. et al. Dormancy Associated Translation Inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine 64, 258–264 (2013).
doi: 10.1016/j.cyto.2013.06.310
Palittapongarnpim, P. et al. Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Sci Rep 8, 11597 (2018).
pmcid: 6072702 doi: 10.1038/s41598-018-29986-3 pubmed: 6072702
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010).
pmcid: 2928508 doi: 10.1101/gr.107524.110 pubmed: 2928508
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pmcid: 2723002 doi: 10.1093/bioinformatics/btp352 pubmed: 2723002
Faksri, K. et al. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from tuberculous meningitis and pulmonary tuberculosis patients. Sci Rep 8, 4910 (2018).
pmcid: 5861094 doi: 10.1038/s41598-018-23337-y pubmed: 5861094
Bendl, J. et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10, e1003440 (2014).
pmcid: 3894168 doi: 10.1371/journal.pcbi.1003440 pubmed: 3894168
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47, D339–D343 (2019).
doi: 10.1093/nar/gky1006
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870–1874 (2016).
doi: 10.1093/molbev/msw054
Lew, J. M., Kapopoulou, A., Jones, L. M. & Cole, S. T. TubercuList–10 years after. Tuberculosis (Edinb) 91, 1–7 (2011).
doi: 10.1016/j.tube.2010.09.008
Reese, M. G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26, 51–56 (2001).
doi: 10.1016/S0097-8485(01)00099-7
Solovyev V, S. A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences In: Metagenomics and its Applications in Agriculture. Nova Science Publishers. Biomedicine and Environmental Studies, 61–78 (2011).
Tantivitayakul, P., Panapruksachat, S., Billamas, P. & Palittapongarnpim, P. Variable number of tandem repeat sequences act as regulatory elements in Mycobacterium tuberculosis. Tuberculosis (Edinb) 90, 311–318 (2010).
doi: 10.1016/j.tube.2010.08.003

Auteurs

Pornpen Tantivitayakul (P)

Department of Oral Microbiology, Faculty of Dentistry, 6 Yothi Road, Mahidol University, Bangkok, Thailand.

Wuthiwat Ruangchai (W)

Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.

Tada Juthayothin (T)

National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phaholyothin Road, Pathumthani, Thailand.

Nat Smittipat (N)

National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phaholyothin Road, Pathumthani, Thailand.

Areeya Disratthakit (A)

Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand.

Surakameth Mahasirimongkol (S)

Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand.

Wasna Viratyosin (W)

National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phaholyothin Road, Pathumthani, Thailand.

Katsushi Tokunaga (K)

Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

Prasit Palittapongarnpim (P)

Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand. Prasit.pal@mahidol.ac.th.
National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phaholyothin Road, Pathumthani, Thailand. Prasit.pal@mahidol.ac.th.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH