Neuroprotective Fragment C of Tetanus Toxin Modulates IL-6 in an ALS Mouse Model.
Amyotrophic Lateral Sclerosis
/ drug therapy
Animals
Anti-Inflammatory Agents
/ pharmacology
Caspase 1
/ metabolism
Disease Models, Animal
Down-Regulation
Female
Inflammasomes
/ metabolism
Inflammation Mediators
/ metabolism
Interleukin-6
/ metabolism
Male
Mice, Inbred C57BL
Mice, Transgenic
Muscle, Skeletal
/ drug effects
NLR Family, Pyrin Domain-Containing 3 Protein
/ metabolism
Neuroprotective Agents
/ pharmacology
Peptide Fragments
/ pharmacology
Spinal Cord
/ drug effects
Superoxide Dismutase-1
/ genetics
Tetanus Toxin
/ pharmacology
SOD1G93A mouse model
TTC
amyotrophic lateral sclerosis
inflammation
Journal
Toxins
ISSN: 2072-6651
Titre abrégé: Toxins (Basel)
Pays: Switzerland
ID NLM: 101530765
Informations de publication
Date de publication:
17 05 2020
17 05 2020
Historique:
received:
25
03
2020
revised:
15
04
2020
accepted:
13
05
2020
entrez:
21
5
2020
pubmed:
21
5
2020
medline:
3
3
2021
Statut:
epublish
Résumé
Neuroinflammation plays a significant role in amyotrophic lateral sclerosis (ALS) pathology, leading to the development of therapies targeting inflammation in recent years. Our group has studied the tetanus toxin C-terminal fragment (TTC) as a therapeutic molecule, showing neuroprotective properties in the SOD1G93A mouse model. However, it is unknown whether TTC could have some effect on inflammation. The objective of this study was to assess the effect of TTC on the regulation of inflammatory mediators to elucidate its potential role in modulating inflammation occurring in ALS. After TTC treatment in SOD1G93A mice, levels of eotaxin-1, interleukin (IL)-2, IL-6 and macrophage inflammatory protein (MIP)-1 alpha (α) and galectin-1 were analyzed by immunoassays in plasma samples, whilst protein expression of caspase-1, IL-1β, IL-6 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was measured in the spinal cord, extensor digitorum longus (EDL) muscle and soleus (SOL) muscle. The results showed reduced levels of IL-6 in spinal cord, EDL and SOL in treated SOD1G93A mice. In addition, TTC showed a different role in the modulation of NLRP3 and caspase-1 depending on the tissue analyzed. In conclusion, our results suggest that TTC could have a potential anti-inflammatory effect by reducing IL-6 levels in tissues drastically affected by the disease. However, further research is needed to study more in depth the anti-inflammatory effect of TTC in ALS.
Identifiants
pubmed: 32429516
pii: toxins12050330
doi: 10.3390/toxins12050330
pmc: PMC7290364
pii:
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Inflammasomes
0
Inflammation Mediators
0
Interleukin-6
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
Neuroprotective Agents
0
Nlrp3 protein, mouse
0
Peptide Fragments
0
Tetanus Toxin
0
interleukin-6, mouse
0
tetanus toxin fragment C
0
Superoxide Dismutase-1
EC 1.15.1.1
Casp1 protein, mouse
EC 3.4.22.36
Caspase 1
EC 3.4.22.36
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Instituto de Salud Carlos III
ID : PI17/00949
Pays : International
Organisme : Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa"
ID : .
Pays : International
Organisme : Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-612)
ID : .
Pays : International
Références
Brain Behav. 2017 Feb 19;7(3):e00637
pubmed: 28293476
Cytokine Growth Factor Rev. 2017 Oct;37:81-88
pubmed: 28532674
Can J Neurol Sci. 2017 Jan;44(1):90-95
pubmed: 27774920
Stem Cell Res. 2017 Dec;25:166-178
pubmed: 29154076
Toxins (Basel). 2010 Nov;2(11):2622-44
pubmed: 22069568
Inflammation. 2018 Feb;41(1):93-103
pubmed: 28936769
Glia. 2015 Dec;63(12):2260-73
pubmed: 26200799
Mol Cell Neurosci. 2019 Jan;94:23-31
pubmed: 30439413
Eur J Neurol. 2009 Jun;16(6):771-4
pubmed: 19236470
Science. 2016 Aug 19;353(6301):777-83
pubmed: 27540165
Neurol Neuroimmunol Neuroinflamm. 2018 May 18;5(4):e465
pubmed: 29845093
Neurology. 2005 Dec 27;65(12):1958-60
pubmed: 16380619
Stem Cell Rev Rep. 2012 Mar;8(1):279-87
pubmed: 21537993
Curr Opin Neurol. 2018 Oct;31(5):635-639
pubmed: 30048339
Neuropathol Appl Neurobiol. 2018 Oct;44(6):606-627
pubmed: 29575052
Neurol Neuroimmunol Neuroinflamm. 2016 Jun 01;3(4):e244
pubmed: 27308305
Mol Med Rep. 2019 Jul;20(1):463-472
pubmed: 31180523
Acta Neurol Scand. 2016 Aug;134(2):94-100
pubmed: 26427609
J Neurol Sci. 2019 Mar 15;398:50-53
pubmed: 30682521
Lancet Neurol. 2019 Feb;18(2):211-220
pubmed: 30663610
J Mol Med (Berl). 2010 Mar;88(3):297-308
pubmed: 19921501
Sci Rep. 2017 Aug 22;7(1):9094
pubmed: 28831083
J Neurol Neurosurg Psychiatry. 2017 Oct;88(10):876-882
pubmed: 28794151
Orphanet J Rare Dis. 2011 Mar 21;6:10
pubmed: 21418619
Front Immunol. 2019 Apr 12;10:801
pubmed: 31031774
J Neurol Sci. 2015 Oct 15;357(1-2):22-7
pubmed: 26198021
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13046-50
pubmed: 20616033
Nat Cell Biol. 2018 Aug;20(8):917-927
pubmed: 30050118
Nature. 2017 Oct 18;550(7676):S120-S121
pubmed: 29045376
BMB Rep. 2018 Nov;51(11):545-546
pubmed: 30463642
Biochem Biophys Res Commun. 2011 Apr 22;407(4):758-63
pubmed: 21439935
Brain Pathol. 2018 Jan;28(1):14-27
pubmed: 27880990
Int J Mol Sci. 2019 Jun 05;20(11):
pubmed: 31195629
Front Neurosci. 2019 Jun 05;13:574
pubmed: 31231184
Trends Biochem Sci. 2016 Dec;41(12):1012-1021
pubmed: 27669650
Mol Neurobiol. 2017 Dec;54(10):8429-8443
pubmed: 27957680
Biochem Biophys Res Commun. 2019 Jun 25;514(2):407-414
pubmed: 31056256
J Neurol Sci. 2018 Nov 15;394:69-74
pubmed: 30219498
Mol Neurobiol. 2018 Mar;55(3):2350-2361
pubmed: 28357805
Proteomics. 2005 Jul;5(11):2896-906
pubmed: 15981298
Front Immunol. 2017 Aug 21;8:1005
pubmed: 28871262
Restor Neurol Neurosci. 2008;26(6):459-65
pubmed: 19096133
JAMA Neurol. 2016 Nov 1;73(11):1316-1324
pubmed: 27668667
IBRO Rep. 2019 Jan 11;6:74-86
pubmed: 30705990
J Neuroinflammation. 2015 Jun 28;12:127
pubmed: 26126965
Neurodegener Dis. 2011;8(5):386-96
pubmed: 21346327