PPARδ-mediated mitochondrial rewiring of osteoblasts determines bone mass.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 05 2020
Historique:
received: 03 12 2019
accepted: 27 04 2020
entrez: 23 5 2020
pubmed: 23 5 2020
medline: 15 12 2020
Statut: epublish

Résumé

Bone turnover, which is determined by osteoclast-mediated bone resorption and osteoblast-mediated bone formation, represents a highly energy consuming process. The metabolic requirements of osteoblast differentiation and mineralization, both essential for regular bone formation, however, remain incompletely understood. Here we identify the nuclear receptor peroxisome proliferator-activated receptor (PPAR) δ as key regulator of osteoblast metabolism. Induction of PPARδ was essential for the metabolic adaption and increased rate in mitochondrial respiration necessary for the differentiation and mineralization of osteoblasts. Osteoblast-specific deletion of PPARδ in mice, in turn, resulted in an altered energy homeostasis of osteoblasts, impaired mineralization and reduced bone mass. These data show that PPARδ acts as key regulator of osteoblast metabolism and highlight the relevance of cellular metabolic rewiring during osteoblast-mediated bone formation and bone-turnover.

Identifiants

pubmed: 32439961
doi: 10.1038/s41598-020-65305-5
pii: 10.1038/s41598-020-65305-5
pmc: PMC7242479
doi:

Substances chimiques

PPAR delta 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8428

Références

Karner, C. M. & Long, F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol. Life Sci. 74(9), 1649–1657 (2017).
doi: 10.1007/s00018-016-2425-5
Wan, C. et al. Role of HIF-1alpha in skeletal development. Ann. N. Y. Acad. Sci. 1192, 322–6 (2010).
doi: 10.1111/j.1749-6632.2009.05238.x
Grüneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1(2), 236–250 (2019).
doi: 10.1038/s42255-018-0016-5
Wang, Y. et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117(6), 1616–26 (2007).
doi: 10.1172/JCI31581
Wan, C. et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc. Natl Acad. Sci. USA 105(2), 686–91 (2008).
doi: 10.1073/pnas.0708474105
Regan, J. N. et al. Up-regulation of glycolytic metabolism is required for HIF1alpha-driven bone formation. Proc. Natl Acad. Sci. USA 111(23), 8673–8 (2014).
doi: 10.1073/pnas.1324290111
Esen, E. et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17(5), 745–55 (2013).
doi: 10.1016/j.cmet.2013.03.017
Adamek, G. et al. Fatty acid oxidation in bone tissue and bone cells in culture. Charact. hormonal influences. Biochem. J. 248(1), 129–37 (1987).
Niemeier, A. et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43(2), 230–7 (2008).
doi: 10.1016/j.bone.2008.03.022
Chen, C. T. et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cell 26(4), 960–8 (2008).
doi: 10.1634/stemcells.2007-0509
Komarova, S. V., Ataullakhanov, F. I. & Globus, R. K. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am. J. Physiol. Cell Physiol 279(4), C1220–9 (2000).
doi: 10.1152/ajpcell.2000.279.4.C1220
Wei, J. et al. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell 161(7), 1576–1591 (2015).
doi: 10.1016/j.cell.2015.05.029
Skrtic, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20(5), 674–88 (2011).
doi: 10.1016/j.ccr.2011.10.015
Scholtysek, C. et al. PPARbeta/delta governs Wnt signaling and bone turnover. Nat. Med. 19(5), 608–13 (2013).
doi: 10.1038/nm.3146
Ipseiz, N. et al. Adopted orphans as regulators of inflammation, immunity and skeletal homeostasis. Swiss Med. Wkly. 144, w14055 (2014).
pubmed: 25474159
Barish, G. D., Narkar, V. A. & Evans, R. M. PPAR delta: a dagger in the heart of the metabolic syndrome. J. Clin. Invest. 116(3), 590–7 (2006).
doi: 10.1172/JCI27955
Fu, H. et al. Impaired musculoskeletal response to age and exercise in PPARbeta(-/-) diabetic mice. Endocrinology 155(12), 4686–96 (2014).
doi: 10.1210/en.2014-1585
Kleyer, A. et al. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. J. Bone Min. Res. 27(12), 2442–51 (2012).
doi: 10.1002/jbmr.1702
Bouffi, C. et al. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 5(12), e14247 (2010).
doi: 10.1371/journal.pone.0014247
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–7 (2006).
doi: 10.1080/14653240600855905
Kronke, G. et al. R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62(8), 2303–12 (2010).
doi: 10.1002/art.27496
Kronke, G. et al. Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J. Biol. Chem. 278(51), 51006–14 (2003).
doi: 10.1074/jbc.M304103200
Jitschin, R. et al. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 123(17), 2663–72 (2014).
doi: 10.1182/blood-2013-10-532200

Auteurs

Dorothea I H Müller (DIH)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Cornelia Stoll (C)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Katrin Palumbo-Zerr (K)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Christina Böhm (C)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Brenda Krishnacoumar (B)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Natacha Ipseiz (N)

Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, United Kingdom.

Jule Taubmann (J)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Max Zimmermann (M)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Martin Böttcher (M)

Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.

Dimitrios Mougiakakos (D)

Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.

Jan Tuckermann (J)

Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany.

Farida Djouad (F)

IRMB, University Montpellier, INSERM, Montpellier, France.

Georg Schett (G)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.

Carina Scholtysek (C)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany.

Gerhard Krönke (G)

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Erlangen, Germany. gerhard.kroenke@uk-erlangen.de.
Nikolaus Fiebiger Center of Molecular Medicine, University of Erlangen- Nuremberg, Erlangen, Germany. gerhard.kroenke@uk-erlangen.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH