In silico bacteria evolve robust cooperaion via complex quorum-sensing strategies.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 05 2020
25 05 2020
Historique:
received:
26
05
2019
accepted:
28
04
2020
entrez:
27
5
2020
pubmed:
27
5
2020
medline:
2
12
2020
Statut:
epublish
Résumé
Many species of bacteria collectively sense and respond to their social and physical environment via 'quorum sensing' (QS), a communication system controlling extracellular cooperative traits. Despite detailed understanding of the mechanisms of signal production and response, there remains considerable debate over the functional role(s) of QS: in short, what is it for? Experimental studies have found support for diverse functional roles: density sensing, mass-transfer sensing, genotype sensing, etc. While consistent with theory, these results cannot separate whether these functions were drivers of QS adaption, or simply artifacts or 'spandrels' of systems shaped by distinct ecological pressures. The challenge of separating spandrels from drivers of adaptation is particularly hard to address using extant bacterial species with poorly understood current ecologies (let alone their ecological histories). To understand the relationship between defined ecological challenges and trajectories of QS evolution, we used an agent-based simulation modeling approach. Given genetic mixing, our simulations produce behaviors that recapitulate features of diverse microbial QS systems, including coercive (high signal/low response) and generalized reciprocity (signal auto-regulation) strategists - that separately and in combination contribute to QS-dependent resilience of QS-controlled cooperation in the face of diverse cheats. We contrast our in silico results given defined ecological challenges with bacterial QS architectures that have evolved under largely unknown ecological contexts, highlighting the critical role of genetic constraints in shaping the shorter term (experimental evolution) dynamics of QS. More broadly, we see experimental evolution of digital organisms as a complementary tool in the search to understand the emergence of complex QS architectures and functions.
Identifiants
pubmed: 32451396
doi: 10.1038/s41598-020-65076-z
pii: 10.1038/s41598-020-65076-z
pmc: PMC7248119
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8628Commentaires et corrections
Type : ErratumIn
Références
McNally, L., Viana, M. & Brown, S. P. Cooperative secretions facilitate host range expansion in bacteria. Nature Communications 5, 4594 (2014).
pubmed: 25091146
pmcid: 4143932
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).
pubmed: 15329720
Luján, A. M., Gómez, P. & Buckling, A. Siderophore cooperation of the bacterium pseudomonas fluorescens in soil. Biology Letters 11, 20140934 (2015).
pubmed: 25694506
pmcid: 4360104
Butaite, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nature Communications 8, 414 (2017).
pubmed: 28871205
pmcid: 5583256
Davies, D. G., Chakrabarty, A. M. & Geesey, G. G. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Applied and environmental microbiology 59, 1181–1186 (1993).
pubmed: 8476292
pmcid: 202258
Lowery, N. V., McNally, L., Ratcliff, W. C. & Brown, S. P. Division of labor, bet hedging, and the evolution of mixed biofilm investment strategies. Mbio 8, e00672–17 (2017).
pubmed: 28790201
pmcid: 5550747
Ross-Gillespie, A. & Kümmerli, R. Collective decision-making in microbes. Frontiers in Microbiology 5, 54 (2014).
pubmed: 24624121
pmcid: 3939447
Rasamiravaka, T. & El Jaziri, M. Quorum-sensing mechanisms and bacterial response to antibiotics in p. aeruginosa. Current Microbiology 73, 747–753 (2016).
pubmed: 27449213
Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in streptococcus pneumoniae and mutans. Genes 8, 15 (2017).
pmcid: 5295010
Evans, K. C. et al. Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME Journal 12, 1263–1272 (2018).
pubmed: 29374267
Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).
pubmed: 29144467
pmcid: 5870893
Schuster, M. & Greenberg, E. P. A network of networks: Quorum-sensing gene regulation in pseudomonas aeruginosa. International Journal of Medical Microbiology 296, 73–81 (2006).
pubmed: 16476569
Antunes, L. C. M. et al. Transcriptome analysis of the vibrio fischeri luxr-luxi regulon. Journal of bacteriology 189, 8387–8391 (2007).
pubmed: 17827287
pmcid: 2168698
Barnard, A. M. et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philosophical Transactions of the Royal Society of London B: Biological Sciences 362, 1165–1183 (2007).
pubmed: 17360277
Gilbert, K. B., Kim, T. H., Gupta, R., Greenberg, E. P. & Schuster, M. Global position analysis of the pseudomonas aeruginosa quorum-sensing transcription factor lasr. Molecular Microbiology 73, 1072–1085 (2009).
pubmed: 19682264
pmcid: 2759405
Popat, R., Cornforth, D. M., McNally, L. & Brown, S. P. Collective sensing and collective responses in quorum-sensing bacteria. Journal of The Royal Society Interface 12, 20140882 (2015).
pmcid: 4305403
Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology 176, 269–275 (1994).
pubmed: 8288518
pmcid: 205046
Atkinson, S., Throup, J. P., Stewart, G. S. & Williams, P. A hierarchical quorum-sensing system in yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molecular Microbiology 33, 1267–1277 (1999).
pubmed: 10510240
Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences 109, 8259–8263 (2012).
Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends in microbiology 10, 365–370 (2002).
pubmed: 12160634
Boedicker, J., Vincent, M. & Ismagilov, R. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition 48, 5908–5911, https://doi.org/10.1002/anie.200901550 (2009).
doi: 10.1002/anie.200901550
pubmed: 19565587
Hense, B. A. & Schuster, M. Core principles of bacterial autoinducer systems. Microbiology and Molecular Biology Reviews 79, 153–169 (2015).
pubmed: 25694124
Garcia-Contreras, R. et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME Journal 9, 115–125 (2015).
pubmed: 24936763
Cornforth, D. M. et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proceedings of the National Academy of Sciences 111, 4280–4284 (2014).
Brown, S. P. & Johnstone, R. A. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proceedings of the Royal Society B: Biological Sciences 268, 961–965 (2001).
pubmed: 11370970
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).
pubmed: 18004383
Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proceedings of the National Academy of Sciences 104, 15876–15881 (2007).
Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Current Biology 19, 341–345 (2009).
pubmed: 19230668
Dandekar, A. A., Chugani, S. & Greenberg, E. P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012).
pubmed: 23066081
pmcid: 3587168
Eldar, A. Social conflict drives the evolutionary divergence of quorum sensing. Proceedings of the National Academy of Sciences 108, 13635–13640 (2011).
Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nature Reviews Microbiology 11, 285–293 (2013).
pubmed: 23456045
Allen, R. C., McNally, L., Popat, R. & Brown, S. P. Quorum sensing protects bacterial co-operation from exploitation by cheats. ISME Journal 10, 1706–1716 (2016).
pubmed: 26744811
Gurney, J., Azimi, S., McNally, A., Brown, S. P. & Diggle, S. P. Combinatorial quorum sensing in pseudomonas aeruginosa allows for novel cheating strategies. bioRxiv, https://doi.org/10.1101/313502 (2018).
Pollak, S. et al. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proceedings of the National Academy of Sciences 113, 2152–2157, https://doi.org/10.1073/pnas.1520615113 (2016).
doi: 10.1073/pnas.1520615113
Even-Tov, E. et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biology 14, 1–18, https://doi.org/10.1371/journal.pbio.1002386 (2016).
doi: 10.1371/journal.pbio.1002386
Smith, J. M. & Harper, D. Animal signals. Oxford Series in Ecology and Evolution (Oxford University Press, New York, NY, 2003).
Bassler, B. L., Greenberg, E. P. & Stevens, A. M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology 179, 4043–4045 (1997).
pubmed: 9190823
pmcid: 179216
Xavier, K. B. & Bassler, B. L. LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology 6, 191–197 (2003).
pubmed: 12732311
Ng, W.-L. & Bassler, B. L. Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics 43, 197–222 (2009).
pubmed: 19686078
pmcid: 4313539
Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine 2, a012427 (2012).
pubmed: 23125205
pmcid: 3543102
Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nature Reviews Microbiology 5, 230–239 (2007).
pubmed: 17304251
Fujiya, M. et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal Homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe 1, 299–308 (2007).
Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R. Bacterial quorum sensing and microbial community interactions. mBio 9, e02331–17, https://doi.org/10.1128/mBio.02331-17 (2018).
doi: 10.1128/mBio.02331-17
pubmed: 29789364
pmcid: 5964356
Connell, J. L. et al. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio 1, e00202–10, https://doi.org/10.1128/mBio.00202-10 (2010).
doi: 10.1128/mBio.00202-10
pubmed: 21060734
pmcid: 2975351
Gould, S. J. & Lewontin, R. C. The spandrels of san marco and the panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences 205, 581–598 (1979).
pubmed: 42062
Hindré, T., Knibbe, C., Beslon, G. & Schneider, D. New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nature Reviews Microbiology 10, 352–365 (2012).
pubmed: 22450379
Ofria, C. & Wilke, C. O. Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229, https://doi.org/10.1162/106454604773563612 (2004).
doi: 10.1162/106454604773563612
pubmed: 15107231
Lenski, R. E., Ofria, C., Collier, T. C. & Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature Publishing Group 400, 661–664 (1999).
Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature Publishing Group 412, 331–333 (2001).
Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. The evolutionary origin of complex features. Nature Publishing Group 423, 139–144 (2003).
Beckmann, B. E., McKinley, P. K., Knoester, D. B. & Ofria, C. Evolution of cooperative information gathering in self-replicating digital organisms. In First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), 65–76 (IEEE, 2007).
Knibbe, C., Beslon, G., Lefort, V., Chaudier, F. & Fayard, J. M. Self-adaptation of genome size in artificial organisms. In Capcarrère, M. S., Freitas, A. A., Bentley, P. J., Johnson, C. G. & Timmis, J. (eds.) Advances in Artificial Life, 423–432 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005).
Frénoy, A., Taddei, F. & Misevic, D. Genetic architecture promotes the evolution and maintenance of cooperation. PLoS Computational Biology 9, e1003339–12 (2013).
pubmed: 24278000
pmcid: 3836702
Misevic, D., Frénoy, A., Lindner, A. B. & Taddei, F. Shape matters: Lifecycle of cooperative patches promotes cooperation in bulky populations. Evolution 69, 788–802 (2015).
pubmed: 25639379
pmcid: 4409860
Frénoy, A., Taddei, F. & Misevic, D. Second-order cooperation: Cooperative offspring as a living public good arising from second-order selection on non-cooperative individuals. Evolution 71, 1802–1814 (2017).
pubmed: 28568812
Scholz, R. L. & Greenberg, E. P. Positive autoregulation of an acyl-homoserine lactone quorum-sensing circuit synchronizes the population response. Mbio 8, e01079–17 (2017).
pubmed: 28743819
pmcid: 5527315
Williams, P. & Camara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology 12, 182–191 (2009).
pubmed: 19249239
Scott-Phillips, T. C. Defining biological communication. Journal of Evolutionary Biology 21, 387–395 (2008).
pubmed: 18205776
Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27–33 (1990).
Pfeiffer, T., Rutte, C., KILLINGBACK, T., Taborsky, M. & Bonhoeffer, S. Evolution of cooperation by generalized reciprocity. Proceedings of the Royal Society B: Biological Sciences 272, 1115–1120 (2005).
pubmed: 16024372
Rutte, C. & Taborsky, M. Generalized reciprocity in rats. PLoS Biology 5, e196 (2007).
pubmed: 17608566
pmcid: 1914408
Popat, R. et al. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution 69, 2371–2383 (2015).
pubmed: 26282874
pmcid: 4862024
Kentzoglanakis, K., Garca López, D., Brown, S. P. & Goldstein, R. A. The evolution of collective restraint: policing and obedience among non-conjugative plasmids. PLoS Computational Biology 9, e1003036 (2013).
pubmed: 23637589
pmcid: 3630227
Frank, S. A. Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377, 520–522 (1995).
pubmed: 7566147
El Mouden, C., West, S. A. & Gardner, A. The Enforcement of Cooperation by Policing. Evolution 64, 2139–2152 (2010).
pubmed: 20148957
Kentzoglanakis, K., Brown, S. & Goldstein, R. The evolution of coercive policing in genetically mixed groups: the case of plasmid copy number control. bioRxiv (2016).
Pearson, J. P. et al. Structure of the autoinducer required for expression of pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences 91, 197–201 (1994).
Seed, P. C., Passador, L. & Iglewski, B. H. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: An autoinduction regulatory hierarchy. Journal of bacteriology 177, 654–659 (1995).
pubmed: 7836299
pmcid: 176640
Nadal Jimenez, P. et al. The multiple signaling systems regulating virulence in pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews 76, 46–65 (2012).
Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews Microbiology 14, 576–588 (2016).
pubmed: 27510864
pmcid: 5056591
Katzianer, D. S., Wang, H., Carey, R. M. & Zhu, J. “Quorum Non-Sensing”: Social cheating and deception in vibrio cholerae. Applied and Environmental Microbiology 81, 3856–3862 (2015).
pubmed: 25819968
pmcid: 4421053
Hurley, A. & Bassler, B. L. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in vibrio cholerae. PLOS Genetics 13, 1–28, https://doi.org/10.1371/journal.pgen.1006826 (2017).
doi: 10.1371/journal.pgen.1006826