Characterization of β-glucan gum for food applications as influenced by genotypic variations in three hulless barley varieties.
barley β-glucan
genotypic factor
rheological and functional properties
structural characterization
thermal
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
01
02
2020
revised:
27
03
2020
accepted:
17
04
2020
pubmed:
28
5
2020
medline:
21
10
2020
entrez:
28
5
2020
Statut:
ppublish
Résumé
Three hulless barley varieties were grown under normal conditions during 2017/2018 and 2018/2019, to improve their agronomic yield, and to assess how the genotype influences β-glucan contents, and its structural, thermal, rheological, and functional properties, as intended to be used in food applications. The extracted gums with hot water at 55 °C and pH 8.0, showed contents from 5.75% to 6.41% (w/w), and concentrations from 68.55% to 79.29% of β-glucan, with some starch and protein impurities. The results of the agronomic trail indicated the highly significant (P ≤ 0.01) influence of the genotype on all studied characteristics, and on the β-glucan contents (0.28
Identifiants
pubmed: 32458491
doi: 10.1111/1750-3841.15165
doi:
Substances chimiques
beta-Glucans
0
Starch
9005-25-8
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1689-1698Informations de copyright
© 2020 Institute of Food Technologists®.
Références
AACC International. (2003). Approved methods of analysis of the American Association of Cereal Chemists International (11th ed.). St. Paul, MN: Author.
Abdel-Haleem, A. M., & Awad, R. A. (2015). Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan. Journal of Food Science and Technology, 52(10), 6425-6434.
Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Ahmed, Z. (2010). Extraction and characterization of β-d-glucan from oat for industrial utilization. International Journal of Biological Macromolecules, 46(3), 304-309.
Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. International Journal of Food Science & Technology, 44(1), 181-187.
Bae, I. Y., Lee, S., Kim, S. M., & Lee, H. G. (2009). Effect of partially hydrolyzed oat β-glucan on the weight gain and lipid profile of mice. Food Hydrocolloids, 23(7), 2016-2021.
Burkus, Z., & Temelli, F. (1998). Effect of extraction conditions on yield, composition, and viscosity stability of barley β-glucan gum. Cereal Chemistry, 75(6), 805-809.
Burkus, Z., & Temelli, F. (2000). Stabilization of emulsions and foams using barley β-glucan. Food Research International, 33(1), 27-33.
Burkus, Z., & Temelli, F. (2005). Rheological properties of barley β-glucan. Carbohydrate Polymers, 59(4), 459-465.
Chappell, A., Scott, K. P., Griffiths, I. A., Cowan, A. A., Hawes, C., Wishart, J., & Martin, P. (2017). The agronomic performance and nutritional content of oat and barley varieties grown in a northern maritime environment depends on variety and growing conditions. Journal of Cereal Science, 74, 1-10.
de Souza, N. L., Bartz, J., da Rosa Zavareze, E., de Oliveira, P. D., da Silva, W. S. V., Alves, G. H., & Dias, A. R. G. (2015). Functional, thermal and rheological properties of oat β-glucan modified by acetylation. Food Chemistry, 178, 243-250.
Dickin, E., Steele, K., Frost, G., Edwards-Jones, G., & Wright, D. (2011). Effect of genotype, environment and agronomic management on β-glucan concentration of naked barley grain intended for health food use. Journal of Cereal Science, 54(1), 44-52.
Dickin, E., Steele, K., Edwards-Jones, G., & Wright, D. (2012). Agronomic diversity of naked barley (Hordeum vulgare L.): A potential resource for breeding new food barley for Europe. Euphytica, 184, 85-99.
FAO. (2017). FAOSTAT. Rome, Italy: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#data/QC
FDA. (2018). CFR-Code of Federal Regulations Title 21. Silver Spring, MD: U.S. Food and Drug Administration. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.81
Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., … Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials, 11(11), 2144.
Griffey, C., Brooks, W., Kurantz, M., Thomason, W., Taylor, F., Obert, D., … Hicks, K. (2010). Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. Journal of Cereal Science, 51(1), 41-49.
Herrera, M. P., Gao, J., Vasanthan, T., Temelli, F., & Henderson, K. (2016). β-Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science, 96(2), 183-196.
Limberger-Bayer, V. M., de Francisco, A., Chan, A., Oro, T., Ogliari, P. J., & Barreto, P. L. (2014). Barley β-glucans extraction and partial characterization. Food Chemistry, 154, 84-89.
Lusk, L. T., Duncombe, G. R., Kay, S. B., Navarro, A., & Ryder, D. (2001). Barley β-glucan and beer foam stability. Journal of the American Society of Brewing Chemists, 59(4), 183-186.
Mariey, S. A., & Khedr, R. A. (2017). Evaluation of some Egyptian barley cultivars under water stress conditions using drought tolerance indices and multivariate analysis. Journal of Sustainable Agriculture Sciences, 43(2), 105-114.
McClear, B. V., & Glennie-Holmes, M. (1985). Enzymic quantification of (1→3) (1→ 4) β-d-glucan in barley and malt. Journal of the Institute of Brewing, 91(5), 285-295.
Milani, J., & Maleki, G. (2012). Hydrocolloids in food industry. In B. Valdez (Ed.), Food industrial processes-Methods and equipment (pp. 17-38). Rijeka, Croatia: InTech
Nishantha, M. D. L. C., Zhao, X., Jeewani, D. C., Bian, J., Nie, X., & Weining, S. (2018). Direct comparison of β-glucan content in wild and cultivated barley. International Journal of Food Properties, 21(1), 2218-2228.
Ryu, J. H., Lee, S., You, S., Shim, J. H., & Yoo, S. H. (2012). Effects of barley and oat β-glucan structures on their rheological and thermal characteristics. Carbohydrate Polymers, 89(4), 1238-1243.
Temelli, F. (1997). Extraction and functional properties of barley β-glucan as affected by temperature and pH. Journal of Food Science, 62, 1194-1201.
Tiwari, U., & Cummins, E. (2008). A predictive model of the effects of genotypic, pre-and postharvest stages on barley β-glucan levels. Journal of the Science of Food and Agriculture, 88(13), 2277-2287.
Vasanthan, T., & Temelli, F. (2008). Grain fractionation technologies for cereal beta-glucan concentration. Food Research International, 41(9), 876-881.
Yu, L., Dong, L., Liu, T. J., Kong, L. S., & Feng, T. (2014). Difference in physicochemical property of β-glucan from barley flour and bran. Advanced Materials Research, 1033, 209-215.
Zaki, K. I., & Al-Masry, A. I. S. (2008). Detection of biochemical genetic markers for net blotch disease resistance and barley grain yield. Egyptian Journal of Phytopathology, 36, 1-17.
Zhang, G., Junmei, W., & Jinxin, C. (2002). Analysis of β-glucan content in barley cultivars from different locations of China. Food Chemistry, 79(2), 251-254.
Zhang, H., Zhang, N., Xiong, Z., Wang, G., Xia, Y., Lai, P., & Ai, L. (2018). Structural characterization and rheological properties of β-D-glucan from hull-less barley (Hordeum vulgare L. var. nudum Hook.f.). Phytochemistry, 155, 155-163.
Zheng, X., Li, L., & Wang, Q. (2011). Distribution and molecular characterization of β-glucans from hull-less barley bran, shorts and flour. International Journal of Molecular Sciences, 12(3), 1563-1574.
Zielke, C., Lu, Y., & Nilsson, L. (2019). Aggregation and microstructure of cereal β-glucan and its association with other biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 402-409.