Introducing PIONEER: a project to harness big data in prostate cancer research.
Journal
Nature reviews. Urology
ISSN: 1759-4820
Titre abrégé: Nat Rev Urol
Pays: England
ID NLM: 101500082
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
accepted:
16
04
2020
pubmed:
29
5
2020
medline:
21
1
2022
entrez:
29
5
2020
Statut:
ppublish
Résumé
Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe (PIONEER) is a European network of excellence for big data in prostate cancer, consisting of 32 private and public stakeholders from 9 countries across Europe. Launched by the Innovative Medicines Initiative 2 and part of the Big Data for Better Outcomes Programme (BD4BO), the overarching goal of PIONEER is to provide high-quality evidence on prostate cancer management by unlocking the potential of big data. The project has identified critical evidence gaps in prostate cancer care, via a detailed prioritization exercise including all key stakeholders. By standardizing and integrating existing high-quality and multidisciplinary data sources from patients with prostate cancer across different stages of the disease, the resulting big data will be assembled into a single innovative data platform for research. Based on a unique set of methodologies, PIONEER aims to advance the field of prostate cancer care with a particular focus on improving prostate-cancer-related outcomes, health system efficiency by streamlining patient management, and the quality of health and social care delivered to all men with prostate cancer and their families worldwide.
Identifiants
pubmed: 32461687
doi: 10.1038/s41585-020-0324-x
pii: 10.1038/s41585-020-0324-x
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
351-362Investigateurs
Emelie Andersson
(E)
Heidi Arala
(H)
Anssi Auvinen
(A)
Chris Bangma
(C)
Danny Burke
(D)
Antonella Cardone
(A)
Joaquin Casariego
(J)
Guido Cuperus
(G)
Saeed Dabestani
(S)
Francesco Esperto
(F)
Nicola Fossati
(N)
Adam Fridhammar
(A)
Giorgio Gandaglia
(G)
Delila Gasi Tandefelt
(DG)
Friedemann Horn
(F)
Johannes Huber
(J)
Jonas Hugosson
(J)
Henkjan Huisman
(H)
Andreas Josefsson
(A)
Olavi Kilkku
(O)
Markus Kreuz
(M)
Michael Lardas
(M)
Joe Lawson
(J)
Florence Lefresne
(F)
Stephane Lejeune
(S)
Elaine Longden-Chapman
(E)
Gordon McVie
(G)
Lisa Moris
(L)
Nicolas Mottet
(N)
Teemu Murtola
(T)
Charlie Nicholls
(C)
Karl H Pang
(KH)
Katie Pascoe
(K)
Marta Picozzi
(M)
Karin Plass
(K)
Pasi Pohjanjousi
(P)
Matthew Reaney
(M)
Sebastiaan Remmers
(S)
Paul Robinson
(P)
Jack Schalken
(J)
Max Schravendeel
(M)
Thomas Seisen
(T)
Angela Servan
(A)
Kirill Shiranov
(K)
Robert Snijder
(R)
Carl Steinbeisser
(C)
Nesrine Taibi
(N)
Kirsi Talala
(K)
Derya Tilki
(D)
Thomas Van den Broeck
(T)
Zdravko Vassilev
(Z)
Olli Voima
(O)
Eleni Vradi
(E)
Reg Waldeck
(R)
Ward Weistra
(W)
Peter-Paul Willemse
(PP)
Manfred Wirth
(M)
Russ Wolfinger
(R)
Nazanin Zounemat Kermani
(NZ)
Commentaires et corrections
Type : ErratumIn
Références
Smith-Palmer, J., Takizawa, C. & Valentine, W. Literature review of the burden of prostate cancer in Germany, France, the United Kingdom and Canada. BMC Urol. 19, 19 (2019).
doi: 10.1186/s12894-019-0448-6
Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 103, 356–387 (2018).
doi: 10.1016/j.ejca.2018.07.005
Patel, A. R. & Klein, E. A. Risk factors for prostate cancer. Nat. Clin. Pract. Urol. 6, 87–95 (2009).
doi: 10.1038/ncpuro1290
Luengo-Fernandez, R., Leal, J., Gray, A. & Sullivan, R. Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol. 14, 1165–1174 (2013).
doi: 10.1016/S1470-2045(13)70442-X
Cancer Research UK. CRUK. https://www.cancerresearchuk.org/ (2019).
Chinegwundoh, F. et al. Risk and presenting features of prostate cancer amongst African-Caribbean, South Asian and European men in North-east London. BJU Int. 98, 1216–1220 (2006).
doi: 10.1111/j.1464-410X.2006.06503.x
Campi, R. et al. Impact of metabolic diseases, drugs, and dietary factors on prostate cancer risk, recurrence, and survival: a systematic review by the European Association of Urology section of oncological urology. Eur. Urol. Focus 5, 1029–1057 (2018).
doi: 10.1016/j.euf.2018.04.001
Eggener, S. E., Rumble, R. B. & Beltran, H. Molecular biomarkers in localized prostate cancer: ASCO guideline summary. JCO Oncol. Pract https://doi.org/10.1200/JOP.19.00752 (2020).
doi: 10.1200/JOP.19.00752
pubmed: 32048932
Kohaar, I. P. G. & Srivastava, S. A rich array of prostate cancer molecular biomarkers: opportunities and challenges. Int. J. Mol. Sci. 20, 1813 (2019).
doi: 10.3390/ijms20081813
Gondos, A., Krilaviciute, A., Smailyte, G., Ulys, A. & Brenner, H. Cancer surveillance using registry data: results and recommendations for the Lithuanian national prostate cancer early detection programme. Eur. J. Cancer 51, 1630–1637 (2015).
doi: 10.1016/j.ejca.2015.04.009
Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ. 362, k3519 (2018).
doi: 10.1136/bmj.k3519
Brookman-May, S. D. et al. Latest evidence on the impact of smoking, sports, and sexual activity as modifiable lifestyle risk factors for prostate cancer incidence, recurrence, and progression: a systematic review of the literature by the european association of urology section of oncological urology (ESOU). Eur. Urol. Focus 5, 756–787 (2018).
doi: 10.1016/j.euf.2018.02.007
Health Europa. Available from: https://www.healtheuropa.eu/enhance-prostate-cancer-care/85990/ (2019).
PIONEER. Prostate Cancer Diagnosis and Treatment Enhancement through the Power of Big Data in Europe. Available from: https://prostate-pioneer.eu (2019).
Domecq, J. P. et al. Patient engagement in research: a systematic review. BMC Health Serv. Res. 14, 89 (2014).
doi: 10.1186/1472-6963-14-89
Kamphuis B. A. B., et al. RWE in Europe Paper V — policy challenges around real world evidence adoption in Europe 2020. http://www.lse.ac.uk/business-and-consultancy/consulting/assets/documents/rwe-in-europe-paper-v.pdf (2019).
Dasgupta, P. et al. Geographical variations in prostate cancer outcomes: a systematic review of international evidence. Front. Oncol. 9, 238 (2019).
doi: 10.3389/fonc.2019.00238
UCAN. UCAN Aberdeen 2020. https://www.ucanaberdeen.com (2019).
Europa Uomo. https://www.europa-uomo.org (2019).
EAPM. European Alliance for Personalised Medicine. https://www.euapm.eu (2019).
IMI. Innovative Medicines Initiative (IMI). www.imi.europa.eu (2019).
BD4BO. Big Data for Better Outcomes. http://bd4bo.eu (2019).
MacLennan, S. et al. A core outcome set for localised prostate cancer effectiveness trials. BJU Int. 120, E64–E79 (2017).
doi: 10.1111/bju.13854
Auffray, C. et al. Making sense of big data in health research: towards an EU action plan. Genome Med. 8, 71 (2016).
doi: 10.1186/s13073-016-0323-y
Scheufele, E. et al. tranSMART: an open source knowledge management and high content data analytics platform. AMIA Jt. Summits Transl. Sci. Proc. 2014, 96–101 (2014).
pubmed: 25717408
pmcid: 4333702
SAS. SAS analytics software solutions 2019. https://www.sas.com/en_us/solutions/analytics.html (2019).
OHDSI. Observational Health Data Sciences and Informatics. https://github.com/OHDSI (2019).
EMIF. European Medical Information Framework. http://www.emif.eu (2019).
EISBM. European Institute for Systems Biology and Medicine. http://www.eisbm.org/ (2019).
Imperial College London, Data Science Institue. https://www.imperial.ac.uk/data-science/about-the-institute/ (2019).
U-BIOPRED. Unbiased BIOmarkers in PREDiction of respiratory disease outcomes 2019. https://www.europeanlung.org/en/projects-and-research/projects/u-biopred/home (2019).
eTRIKS. eTRIKS Harmonisation Services. https://www.etriks.org/etriks-harmonisation-services/ (2019).
Martin, N. E. et al. Defining a standard set of patient-centered outcomes for men with localized prostate cancer. Eur. Urol. 67, 460–467 (2015).
doi: 10.1016/j.eururo.2014.08.075
Morgans, A. K. et al. Development of a standardized set of patient-centered outcomes for advanced prostate cancer: an international effort for a unified approach. Eur. Urol. 68, 891–898 (2015).
doi: 10.1016/j.eururo.2015.06.007
Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350, g7647 (2015).
doi: 10.1136/bmj.g7647
Dodd, S. et al. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J. Clin. Epidemiol. 96, 84–92 (2018).
doi: 10.1016/j.jclinepi.2017.12.020
Williamson, P. R. et al. The COMET Handbook: version 1.0. Trials. 18 (Suppl 3), 280 (2017).
doi: 10.1186/s13063-017-1978-4
Bruinsma, S. M. et al. Expert consensus document: semantics in active surveillance for men with localized prostate cancer - results of a modified Delphi consensus procedure. Nat. Rev. Urol. 14, 312–322 (2017).
doi: 10.1038/nrurol.2017.26
HARMONY. Big Data to Enable Better and Faster Treatments for Patients with Hematological Malignancies. https://www.harmony-alliance.eu/ (2019).
OHDSI. Observational Health Data Sciences and Informatics (OHDSI) - Genomic CDM Subgroup. https://www.ohdsi.org/web/wiki/doku.php?id=projects:workgroups:genetics-sg (2019).
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).
doi: 10.1038/nmeth.2810
Lum, P. Y. et al. Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236 (2013).
doi: 10.1038/srep01236
Le Cao K. A., et al. mixOmics: Omics Data Integration Project. 2016. p. R package version 6.1.
Lowe, W. L. Jr. & Reddy, T. E. Genomic approaches for understanding the genetics of complex disease. Genome Res. 25, 1432–1441 (2015).
doi: 10.1101/gr.190603.115
Kuhn M., et al caret: Classification and Regression Training. 5.15-044 ed2012.
Brockwell, S. E. & Gordon, I. R. A comparison of statistical methods for meta-analysis. Stat. Med. 20, 825–840 (2001).
doi: 10.1002/sim.650
Thompson, S. G. & Higgins, J. P. T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002).
doi: 10.1002/sim.1187
Reimand, J., Arak, T. & Vilo, J. g:Profiler — a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–W315 (2011).
doi: 10.1093/nar/gkr378
Rappaport, N. et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 45(D1), D877–D887 ‑(2017).
doi: 10.1093/nar/gkw1012
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45(D1), D362–D368 (2017).
doi: 10.1093/nar/gkw937
Steyerberg E. W. Clinical Prediction Models: a Practical Approach to Development, Validation, and Updating. York S-VN, editor2009.
Alberts A. R., et al. Characteristics of prostate cancer found at fifth screening in the European Randomized Study of Screening for Prostate Cancer Rotterdam: can we selectively detect high-grade prostate cancer with upfront multivariable risk stratification and magnetic resonance imaging? Eur. Urol. 73, 343–350 (2018).
doi: 10.1016/j.eururo.2017.06.019
Brains4Brain. https://www.brains4brain.eu (2019).
Parmar, A. & Chan, K. K. W. Health technology assessment methodology in metastatic renal cell carcinoma. Nat. Rev. Urol. 17, 3–5 (2020).
doi: 10.1038/s41585-019-0257-4
Makady, A. et al. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health 20, 858–865 (2017).
doi: 10.1016/j.jval.2017.03.008
Sacchini, D., Virdis, A., Refolo, P., Pennacchini, M. & de Paula, I. C. Health technology assessment (HTA): ethical aspects. Med. Health Care Philos. 12, 453–457 (2009).
doi: 10.1007/s11019-009-9206-y
EFPIA. What are Medicines Adaptive Pathways to Patients (MAPPs)? https://www.efpia.eu/about-medicines/development-of-medicines/regulations-safety-supply/mapps/ (2019).
U.S. Food and Drug Administration. Framework for FDA’s Real-World Evidence Program. 2018. https://www.fda.gov/media/120060/download (2019).
Noura, M. & Gaedke, A. M. Interoperability in internet of things: taxonomies and open challenges. Mob. Netw. Appl. 24, 796–809 (2019).
doi: 10.1007/s11036-018-1089-9
Project Data Sphere. https://projectdatasphere.org/projectdatasphere/html/home (2019).
EUR-Lex. Access to European Union law. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679 (2019).
GDPR. General Data Protection Regulations 2020. https://gdpr-info.eu/ (2019).