Analysis of variants in Chinese individuals with primary open-angle glaucoma using molecular inversion probe (MIP)-based panel sequencing.
Adolescent
Adult
Aged
Asian People
Ataxin-2
/ genetics
Cohort Studies
Cyclin-Dependent Kinase Inhibitor p15
/ genetics
Cytoskeletal Proteins
/ genetics
Extracellular Matrix Proteins
/ genetics
Eye Proteins
/ genetics
Female
Forkhead Transcription Factors
/ genetics
Genetic Predisposition to Disease
Genome-Wide Association Study
/ methods
Glaucoma, Open-Angle
/ genetics
Glycoproteins
/ genetics
Humans
Male
Middle Aged
Molecular Probes
/ genetics
Mutation
Protein Domains
Risk Factors
Sequence Analysis, DNA
/ methods
Thioredoxin Reductase 2
/ genetics
Journal
Molecular vision
ISSN: 1090-0535
Titre abrégé: Mol Vis
Pays: United States
ID NLM: 9605351
Informations de publication
Date de publication:
2020
2020
Historique:
received:
20
01
2020
accepted:
19
05
2020
entrez:
2
6
2020
pubmed:
2
6
2020
medline:
11
5
2021
Statut:
epublish
Résumé
Family-based genetic linkage analysis and genome-wide association studies (GWASs) have identified many genomic loci associated with primary open-angle glaucoma (POAG). Several causative genes of POAG have been intensively analyzed by sequencing in different populations. However, few investigations have been conducted on the identification of variants of coding region in the genes identified in GWASs. Therefore, further research is needed to investigate whether they harbor pathogenically relevant rare coding variants and account for the observed association. To identify the potentially disease-relevant variants (PDVs) in POAG-associated genes in Chinese patients, we applied molecular inversion probe (MIP)-based panel sequencing to analyze 26 candidate genes in 235 patients with POAG and 241 control subjects. The analysis identified 82 PDVs in 66 individuals across 235 patients with POAG. By comparison, only 18 PDVs in 19 control subjects were found, indicating an enrichment of PDVs in the POAG cohort (28.1% versus 7.9%, p = 8.629e-09). Among 26 candidate genes, the prevalence rate of PDVs in five genes showed a statistically significant difference between patients and controls (33 out of 235 versus 1 out of 241, p = 4.533e-10), including The results suggest that some of the associations identified in POAG risk loci can be ascribed to rare coding variants with likely functional effects that modify POAG risk.
Substances chimiques
ATXN2 protein, human
0
Ataxin-2
0
CDKN2B protein, human
0
Cyclin-Dependent Kinase Inhibitor p15
0
Cytoskeletal Proteins
0
EFEMP1 protein, human
0
Extracellular Matrix Proteins
0
Eye Proteins
0
FOXC1 protein, human
0
Forkhead Transcription Factors
0
Glycoproteins
0
Molecular Probes
0
trabecular meshwork-induced glucocorticoid response protein
0
TXNRD2 protein, human
EC 1.8.1.9
Thioredoxin Reductase 2
EC 1.8.1.9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
378-391Informations de copyright
Copyright © 2020 Molecular Vision.
Références
Surv Ophthalmol. 2015 Jul-Aug;60(4):310-26
pubmed: 25907525
BMC Med Genet. 2014 Sep 28;15:109
pubmed: 25261878
Invest Ophthalmol Vis Sci. 2007 Jan;48(1):228-37
pubmed: 17197537
Cell Death Dis. 2014 Feb 20;5:e1069
pubmed: 24556684
Science. 2007 Sep 7;317(5843):1397-400
pubmed: 17690259
Mol Vis. 2011;17:2093-101
pubmed: 21850185
Science. 2012 Dec 21;338(6114):1619-22
pubmed: 23160955
Genomics. 2017 Jan;109(1):27-35
pubmed: 27851990
Nat Genet. 2016 Feb;48(2):189-94
pubmed: 26752265
Eye (Lond). 2005 Jan;19(1):11-5
pubmed: 15218514
Neurology. 2014 Sep 9;83(11):990-5
pubmed: 25098532
Arch Ophthalmol. 2007 Jan;125(1):86-92
pubmed: 17210857
Am J Ophthalmol. 1998 Jan;125(1):98-100
pubmed: 9437321
Mol Vis. 2008 Apr 18;14:739-44
pubmed: 18432317
N Engl J Med. 1998 Apr 9;338(15):1022-7
pubmed: 9535666
Nat Genet. 1999 Jun;22(2):199-202
pubmed: 10369267
Invest Ophthalmol Vis Sci. 2011 Sep 09;52(10):7122-33
pubmed: 21310917
Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1537-1544
pubmed: 28282485
Hum Mol Genet. 2015 Apr 15;24(8):2111-24
pubmed: 25524706
Science. 1997 Jan 31;275(5300):668-70
pubmed: 9005853
Int J Mol Sci. 2015 Dec 04;16(12):28886-911
pubmed: 26690118
Hum Genet. 2011 Jan;129(1):91-100
pubmed: 20981449
Int Ophthalmol Clin. 2008 Fall;48(4):73-94
pubmed: 18936638
Am J Hum Genet. 1998 Nov;63(5):1316-28
pubmed: 9792859
PLoS One. 2015 Jul 10;10(7):e0132529
pubmed: 26162006
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Curr Opin Ophthalmol. 2017 Mar;28(2):133-138
pubmed: 27898466
Mol Vis. 2009;15:646-53
pubmed: 19347049
Hum Mol Genet. 2012 Oct 15;21(20):4543-8
pubmed: 22798626
J Med Genet. 2003 Jan;40(1):e9
pubmed: 12525557
Mol Genet Genomic Med. 2016 Oct 03;4(6):624-633
pubmed: 27896285
Ophthalmic Genet. 1997 Sep;18(3):109-18
pubmed: 9361308
Am J Hum Genet. 1999 Jun;64(6):1775-8
pubmed: 10330365
Mol Med Rep. 2018 Jul;18(1):656-674
pubmed: 29845210
Nat Methods. 2010 Apr;7(4):248-9
pubmed: 20354512
Hum Mol Genet. 2012 Mar 15;21(6):1336-49
pubmed: 22156576
FEBS Lett. 2006 Dec 11;580(28-29):6596-602
pubmed: 17113580
Exp Eye Res. 2017 Jul;160:62-84
pubmed: 28499933
Science. 2002 Feb 8;295(5557):1077-9
pubmed: 11834836
Mol Vis. 2012;18:2119-26
pubmed: 22876139
Nat Methods. 2010 Feb;7(2):111-8
pubmed: 20111037
Hum Mol Genet. 1999 May;8(5):899-905
pubmed: 10196380
Nat Protoc. 2009;4(7):1073-81
pubmed: 19561590
J Biol Chem. 2005 Jun 3;280(22):21043-51
pubmed: 15795224