Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death.
Animals
Cell Death
/ genetics
Cell Line
Cell Survival
/ genetics
Electron Transport Complex I
/ genetics
Energy Metabolism
/ genetics
Glycolysis
/ genetics
Humans
Inflammation
/ genetics
Malate Dehydrogenase
/ genetics
Mice
Mitochondria
/ genetics
Mitochondrial Diseases
/ genetics
Mutation
NADP
/ metabolism
Oxidative Phosphorylation
Pentose Phosphate Pathway
/ genetics
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
received:
18
07
2019
accepted:
01
05
2020
entrez:
3
6
2020
pubmed:
3
6
2020
medline:
18
8
2020
Statut:
epublish
Résumé
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.
Identifiants
pubmed: 32483148
doi: 10.1038/s41467-020-16423-1
pii: 10.1038/s41467-020-16423-1
pmc: PMC7264245
doi:
Substances chimiques
NADP
53-59-8
Malate Dehydrogenase
EC 1.1.1.37
malate dehydrogenase (decarboxylating)
EC 1.1.1.39
Electron Transport Complex I
EC 7.1.1.2
Banques de données
figshare
['10.6084/m9.figshare.12310118.v1']
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2714Subventions
Organisme : NIGMS NIH HHS
ID : F32 GM125243
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121452
Pays : United States
Organisme : NIDCR NIH HHS
ID : F30 DE028206
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA181217
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM067945
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK089883
Pays : United States
Références
Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249–255 (2010).
doi: 10.1038/nbt.1606
Arroyo, J. D. et al. A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab. 24, 875–885 (2016).
doi: 10.1016/j.cmet.2016.08.017
Kruse, S. E. et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7, 312–320 (2008).
doi: 10.1016/j.cmet.2008.02.004
Diaz, F., Thomas, C. K., Garcia, S., Hernandez, D. & Moraes, C. T. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum. Mol. Genet. 14, 2737–2748 (2005).
doi: 10.1093/hmg/ddi307
Pilz, Y. L., Bass, S. J. & Sherman, J. A review of mitochondrial optic neuropathies: from inherited to acquired forms. J. Optom. 10, 205–214 (2017).
doi: 10.1016/j.optom.2016.09.003
Kokotas, H., Petersen, M. B. & Willems, P. J. Mitochondrial deafness. Clin. Genet. 71, 379–391 (2007).
doi: 10.1111/j.1399-0004.2007.00800.x
Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).
doi: 10.1016/j.cell.2012.02.035
Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).
doi: 10.1126/science.aad4017
Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol. Med. 6, 721–731 (2014).
doi: 10.1002/emmm.201403943
Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).
doi: 10.1016/j.cmet.2016.08.009
Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).
doi: 10.1038/nature13236
Khan, N. A. et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 26, 419.e5–428.e5 (2017).
doi: 10.1016/j.cmet.2017.07.007
Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. Elife https://doi.org/10.7554/eLife.10575 (2016).
Barrow, J. J. et al. Bromodomain inhibitors correct bioenergetic deficiency caused by mitochondrial disease complex I mutations. Mol. Cell 64, 163–175 (2016).
doi: 10.1016/j.molcel.2016.08.023
Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2alpha axis. Mol. Cell 74, 877–890 e876 (2019).
doi: 10.1016/j.molcel.2019.03.031
Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet 6, 389–402 (2005).
doi: 10.1038/nrg1606
Vafai, S. B. & Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383 (2012).
doi: 10.1038/nature11707
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).
doi: 10.1038/s41467-018-07901-8
Robinson, B. H., Petrova-Benedict, R., Buncic, J. R. & Wallace, D. C. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem. Med. Metab. Biol. 48, 122–126 (1992).
doi: 10.1016/0885-4505(92)90056-5
Chen, Q. et al. Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab. 27, 1007–1025 e1005 (2018).
doi: 10.1016/j.cmet.2018.03.002
Mullen, A. R. et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679–1690 (2014).
doi: 10.1016/j.celrep.2014.04.037
Murai, S. et al. Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions. Oncogenesis 6, e329 (2017).
doi: 10.1038/oncsis.2017.34
Smith, R. A. & Murphy, M. P. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. NY Acad. Sci. 1201, 96–103 (2010).
doi: 10.1111/j.1749-6632.2010.05627.x
Chen, L. et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat. Metab. 1, 404–415 (2019).
doi: 10.1038/s42255-019-0043-x
Lewis, C. A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).
doi: 10.1016/j.molcel.2014.05.008
Minton, D. R. et al. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69, 610.e5–621.e5 (2018).
doi: 10.1016/j.molcel.2018.01.024
Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 24, 640–641 (2016).
doi: 10.1016/j.cmet.2016.09.011
Jarvis, R. M., Hughes, S. M. & Ledgerwood, E. C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522–1530 (2012).
doi: 10.1016/j.freeradbiomed.2012.08.001
Quintana, A., Kruse, S. E., Kapur, R. P., Sanz, E. & Palmiter, R. D. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc. Natl Acad. Sci. USA 107, 10996–11001 (2010).
doi: 10.1073/pnas.1006214107
Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).
doi: 10.1016/j.cell.2015.07.016
Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).
doi: 10.1016/j.cell.2015.07.017
Cappellini, M. D. & Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371, 64–74 (2008).
doi: 10.1016/S0140-6736(08)60073-2
Moyes, C. D. et al. Origins and consequences of mitochondrial decline in nucleated erythrocytes. Biochim. Biophys. Acta 1591, 11–20 (2002).
doi: 10.1016/S0167-4889(02)00224-0
Kuhl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. Elife https://doi.org/10.7554/eLife.30952 (2017).
Meiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2, e1601273 (2016).
doi: 10.1126/sciadv.1601273
Celardo, I., Lehmann, S., Costa, A. C., Loh, S. H. & Miguel Martins, L. dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective. Cell Death Differ. 24, 638–648 (2017).
doi: 10.1038/cdd.2016.158
Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014).
doi: 10.1038/ncomms4128
West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
doi: 10.1038/nri.2017.21
West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).
doi: 10.1038/nature14156
Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016).
doi: 10.1126/science.aad9642
Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).
doi: 10.1126/science.1244360
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
doi: 10.1093/nar/gky1106