Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies.
Escherichia coli
Hydrogenobyrinic acid
Metabolic engineering
Ribosomal binding site libraries
Uroporphyrinogen III
Journal
Microbial cell factories
ISSN: 1475-2859
Titre abrégé: Microb Cell Fact
Pays: England
ID NLM: 101139812
Informations de publication
Date de publication:
01 Jun 2020
01 Jun 2020
Historique:
received:
24
02
2020
accepted:
25
05
2020
entrez:
4
6
2020
pubmed:
4
6
2020
medline:
29
1
2021
Statut:
epublish
Résumé
Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L
Sections du résumé
BACKGROUND
BACKGROUND
Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B
RESULTS
RESULTS
By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L
CONCLUSIONS
CONCLUSIONS
Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L
Identifiants
pubmed: 32487216
doi: 10.1186/s12934-020-01377-2
pii: 10.1186/s12934-020-01377-2
pmc: PMC7268678
doi:
Substances chimiques
Escherichia coli Proteins
0
Uroporphyrins
0
hydrogenobyrinic acid
23599-55-5
Vitamin B 12
P6YC3EG204
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
118Subventions
Organisme : National Natural Science Foundation of China
ID : 31670604
Organisme : National Natural Science Foundation of China
ID : 31970324
Organisme : National Natural Science Foundation of China
ID : 31900052
Organisme : Natural Science Foundation of Liaoning Province of China
ID : 20180550237
Organisme : National Key R&D Program of China
ID : 2018YFA0900300
Organisme : Youth Innovation Promotion Association of the Chinese Academy of Sciences
ID : 2020182
Références
Metab Eng. 2015 May;29:86-96
pubmed: 25769287
FEBS J. 2009 Nov;276(21):6399-411
pubmed: 19796169
Annu Rev Chem Biomol Eng. 2013;4:259-88
pubmed: 23540289
PLoS One. 2014 Oct 30;9(10):e109879
pubmed: 25356668
Microb Biotechnol. 2010 Jan;3(1):24-37
pubmed: 21255303
Microb Cell Fact. 2017 Jan 30;16(1):15
pubmed: 28137297
Bioprocess Biosyst Eng. 2016 Oct;39(10):1527-37
pubmed: 27282166
Nat Commun. 2017 May 11;8:15320
pubmed: 28492282
Metab Eng. 2011 Mar;13(2):159-68
pubmed: 21241816
Mol Syst Biol. 2014 Jun 21;10:731
pubmed: 24952589
Appl Microbiol Biotechnol. 2001 Jul;56(1-2):144-9
pubmed: 11499922
Microb Cell Fact. 2016 Dec 1;15(1):205
pubmed: 27908280
Protein Sci. 2010 Jun;19(6):1137-61
pubmed: 20506125
J Biol Chem. 2005 Jan 14;280(2):1086-94
pubmed: 15525640
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120262
pubmed: 23754814
PLoS One. 2016 Mar 14;11(3):e0151149
pubmed: 26974652
Appl Environ Microbiol. 2004 Dec;70(12):7561-6
pubmed: 15574962
Curr Pharm Biotechnol. 2015;16(12):1094-103
pubmed: 26238682
Trends Biochem Sci. 1990 Dec;15(12):486-91
pubmed: 2077690
World J Microbiol Biotechnol. 2019 Jan 31;35(2):33
pubmed: 30706208
Microb Cell Fact. 2017 Mar 16;16(1):47
pubmed: 28302121
Biochem J. 2008 Oct 15;415(2):257-63
pubmed: 18588505
J Bacteriol. 1969 May;98(2):712-20
pubmed: 5784220
PLoS One. 2008;3(11):e3647
pubmed: 18985154
Nat Commun. 2018 Nov 21;9(1):4917
pubmed: 30464241
J Mol Biol. 2004 Nov 19;344(2):419-33
pubmed: 15522295
Nat Prod Rep. 2002 Aug;19(4):390-412
pubmed: 12195810
Metab Eng. 2007 Mar;9(2):193-207
pubmed: 17239639
Trends Biotechnol. 2016 Aug;34(8):652-664
pubmed: 26996613
Curr Opin Biotechnol. 2014 Oct;29:156-62
pubmed: 24927371
J Virol Methods. 2008 Apr;149(1):85-90
pubmed: 18314204
Microb Cell Fact. 2015 May 17;14:71
pubmed: 25981633
Nat Biotechnol. 2003 Jul;21(7):796-802
pubmed: 12778056
Nat Chem Biol. 2012 Nov;8(11):933-40
pubmed: 23042036
J Biosci Bioeng. 2004;98(3):167-73
pubmed: 16233685
Nat Methods. 2009 May;6(5):343-5
pubmed: 19363495
Infect Immun. 2010 Dec;78(12):4977-89
pubmed: 20679437
Bioresour Technol. 2019 Feb;274:353-360
pubmed: 30537593
Mol Microbiol. 2014 Apr;92(1):153-63
pubmed: 24673795