Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis.
Journal
Shock (Augusta, Ga.)
ISSN: 1540-0514
Titre abrégé: Shock
Pays: United States
ID NLM: 9421564
Informations de publication
Date de publication:
01 05 2021
01 05 2021
Historique:
pubmed:
5
6
2020
medline:
14
1
2022
entrez:
5
6
2020
Statut:
ppublish
Résumé
Sepsis is a life-threatening syndrome which can progress to multiple organ dysfunction with high mortality. Intestinal barrier failure exerts a central role in the pathophysiological sequence of events that lead from sepsis to multiple organ dysfunction. The present study investigated the role of hydrocortisone (HC) administration and fecal microbiota transplantation (FMT) in several parameters of the gut barrier integrity, immune activation, and survival, in a model of polymicrobial sepsis in rats. Forty adults male Wistar rats were randomly divided into four groups: sham (group I), cecal ligation and puncture (CLP) (group II), CLP + HC (2.8 mg/kg, intraperitoneally single dose at 6 h) (group III), and CLP + FMT at 6 h (group IV). At 24 h post-CLP, ileal tissues were harvested for histological and immunohistochemical analyses while endotoxin, IL-6, and IL-10 levels in systemic circulation were determined. In a second experiment the same groups were observed for 7 days for mortality, with daily administration of hydrocortisone (group III) and FMT (group IV) in surviving rats. HC administration and FMT significantly reduced mortality of septic rats by 50%. These interventions totally reversed intestinal mucosal atrophy by increasing villous density and mucosal thickness (μm, mean ± SD: Group I: 620 ± 35, Group II: 411 ± 52, Group III: 622 ± 19, Group IV: 617 ± 44). HC and FMT reduced the apoptotic body count in intestinal crypts whereas these increased the mitotic/apoptotic index. Activated caspase-3 expression in intestinal crypts was significantly reduced by HC or FMT (activated caspase-3 (+) enterocytes/10 crypts, mean ± SD: Group I: 1.6 ± 0.5, Group II: 5.8 ± 2.4, Group III: 3.6 ± 0.9, Group IV: 2.3 ± 0.6). Both treatments increased Paneth cell count and decreased intraepithelial CD3(+) T lymphocytes and inflammatory infiltration of lamina propria to control levels. In the sham group almost the total of intestinal epithelial cells expressed occludin (92 ± 8%) and claudin-1 (98 ± 4%) and CLP reduced this expression to 34 ± 12% for occludin and 35 ± 7% for claudin-1. Administration of HC significantly increased occludin (51 ± 17%) and claudin-1 (77 ± 9%) expression. FMT exerted also a significant restoring effect in tight junction by increasing occludin (56 ± 15%) and claudin-1 (84 ± 7%) expression. The beneficial effects of these treatments on gut barrier function led to significant reduction of systemic endotoxemia (EU/mL, mean ± SD: Group I: 0.93 ± 0.36, Group II: 2.14 ± 1.74, Group III: 1.48 ± 0.53, Group IV: 1.61 ± 0.58), while FMT additionally decreased IL-6 and IL-10 levels. Fecal microbiota transplantation and stress dose hydrocortisone administration in septic rats induce a multifactorial improvement of the gut mechanical and immunological barriers, preventing endotoxemia and leading to improved survival.
Identifiants
pubmed: 32496421
pii: 00024382-202105000-00013
doi: 10.1097/SHK.0000000000001566
doi:
Substances chimiques
Hydrocortisone
WI4X0X7BPJ
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
666-675Informations de copyright
Copyright © 2020 by the Shock Society.
Déclaration de conflit d'intérêts
The authors report no conflicts of interest.
Références
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 2017; 45 (3):486–552.
Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection 2018; 46 (6):751–760.
Deitch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 1992; 216 (2):117–134.
Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, Cariou A, Forceville X, Schwebel C, Martin C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med 2018; 378 (9):809–818.
Cammarota G, Ianiro G, Tilg H, Rajilic-Stojanovic M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017; 66 (4):569–580.
Zingarelli B, Coopersmith CM, Drechsler S, Efron P, Marshall JC, Moldawer L, Wiersinga WJ, Xiao X, Osuchowski MF, Thiemermann C. Part I: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for study design and humane modeling endpoints. Shock 2019; 51 (1):10–22.
Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 2009; 4 (1):31–36.
Tillmann S, Abildgaard A, Winther G, Wegener G. Altered fecal microbiota composition in the Flinders sensitive line rat model of depression. Psychopharmacology (Berl) 2019; 236 (5):1445–1457.
de Koning BA, van Dieren JM, Lindenbergh-Kortleve DJ, van der Sluis M, Matsumoto T, Yamaguchi K, Einerhand AW, Samsom JN, Pieters R, Nieuwenhuis EE. Contributions of mucosal immune cells to methotrexate-induced mucositis. Int Immunol 2006; 18 (6):941–949.
Lee RG, Nakamura K, Tsamandas AC, Abu-Elmagd K, Furukawa H, Hutson WR, Reyes J, Tabasco-Minguillan JS, Todo S, Demetris AJ. Pathology of human intestinal transplantation. Gastroenterology 1996; 110 (6):1820–1834.
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43 (3):304–377.
Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: from molecules to diseases. World J Gastrointest Pathophysiol 2011; 2 (6):123–137.
Assimakopoulos SF, Triantos C, Maroulis I, Gogos C. The role of the gut barrier function in health and disease. Gastroenterology Res 2018; 11 (4):261–263.
Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, Billot L, Correa M, Glass P, Harward M, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018; 378 (9):797–808.
Pritchard DM, Watson AJ. Apoptosis and gastrointestinal pharmacology. Pharmacol Ther 1996; 72 (2):149–169.
Ballegeer M, Van Looveren K, Timmermans S, Eggermont M, Vandevyver S, Thery F, Dendoncker K, Souffriau J, Vandewalle J, Van Wyngene L, et al. Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. J Clin Invest 2018; 128 (8):3265–3279.
Tavasoli M, Azari O, Kheirandish R, Abbasi MF. Evaluation of combination therapy with hydrocortisone, vitamin C, and vitamin E in a rat model of intestine ischemia-reperfusion injury. Comparative Clin Pathol 2018; 27 (2):433–439.
Lu L, Li T, Williams G, Petit E, Borowsky M, Walker WA. Hydrocortisone induces changes in gene expression and differentiation in immature human enterocytes. Am J Physiol Gastrointest Liver Physiol 2011; 300 (3):G425–432.
Teltschik Z, Wiest R, Beisner J, Nuding S, Hofmann C, Schoelmerich J, Bevins CL, Stange EF, Wehkamp J. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology 2012; 55 (4):1154–1163.
Zhao Y, Ding C. Effects of hydrocortisone on regulating inflammation, hemodynamic stability, and preventing shock in severe sepsis patients. Med Sci Monit 2018; 24:3612–3619.
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol 2017; 2 (2):135–143.
Wan YD, Zhu RX, Wu ZQ, Lyu SY, Zhao LX, Du ZJ, Pan XT. Gut microbiota disruption in septic shock patients: a pilot study. Med Sci Monit 2018; 24:8639–8646.
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21 (29):8787–8803.
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 2016; 22 (6):458–478.
Aggeletopoulou I, Konstantakis C, Assimakopoulos SF, Triantos C. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb Pathog 2019; 137:103774.
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368 (5):407–415.
Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc 2013; 78 (2):240–249.
Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci 2020; 21 (2):E386.
Cheng S, Ma X, Geng S, Jiang X, Li Y, Hu L, Li J, Wang Y, Han X. Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury. mSystems 2018; 3 (5):e00137-18.
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124 (1):3–20.