Molecular and Physiological Alterations in Chickpea under Elevated CO2 Concentrations.
Carbon Dioxide
/ metabolism
Chlorophyll
/ metabolism
Cicer
/ drug effects
Gene Expression Regulation, Plant
/ drug effects
Nitrogen
/ metabolism
Plant Proteins
/ metabolism
Plant Roots
/ drug effects
Plant Shoots
/ drug effects
Real-Time Polymerase Chain Reaction
Transcription Factors
/ metabolism
Transcriptome
Climate change
Differentially expressed genes
Elevated CO2 concentration
RNA-Seq
Stress pathways
Transcriptome
Journal
Plant & cell physiology
ISSN: 1471-9053
Titre abrégé: Plant Cell Physiol
Pays: Japan
ID NLM: 9430925
Informations de publication
Date de publication:
01 Aug 2020
01 Aug 2020
Historique:
received:
28
11
2019
accepted:
24
05
2020
pubmed:
6
6
2020
medline:
11
3
2021
entrez:
6
6
2020
Statut:
ppublish
Résumé
The present study reports profiling of the elevated carbon dioxide (CO2) concentration responsive global transcriptome in chickpea, along with a combinatorial approach for exploring interlinks between physiological and transcriptional changes, important for the climate change scenario. Various physiological parameters were recorded in two chickpea cultivars (JG 11 and KAK 2) grown in open top chambers under ambient [380 parts per million (ppm)] and two stressed/elevated CO2 concentrations (550 and 700 ppm), at different stages of plant growth. The elevated CO2 concentrations altered shoot and root length, nodulation (number of nodules), total chlorophyll content and nitrogen balance index, significantly. RNA-Seq from 12 tissues representing vegetative and reproductive growth stages of both cultivars under ambient and elevated CO2 concentrations identified 18,644 differentially expressed genes including 9,687 transcription factors (TF). The differential regulations in genes, gene networks and quantitative real-time polymerase chain reaction (qRT-PCR) -derived expression dynamics of stress-responsive TFs were observed in both cultivars studied. A total of 138 pathways, mainly involved in sugar/starch metabolism, chlorophyll and secondary metabolites biosynthesis, deciphered the crosstalk operating behind the responses of chickpea to elevated CO2 concentration.
Identifiants
pubmed: 32502248
pii: 5851849
doi: 10.1093/pcp/pcaa077
pmc: PMC7434580
doi:
Substances chimiques
Plant Proteins
0
Transcription Factors
0
Chlorophyll
1406-65-1
Carbon Dioxide
142M471B3J
Nitrogen
N762921K75
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1449-1463Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Références
Plant Biotechnol J. 2019 May;17(5):914-931
pubmed: 30328278
Sci Adv. 2018 May 23;4(5):eaaq1012
pubmed: 29806023
Nat Biotechnol. 2013 Mar;31(3):240-6
pubmed: 23354103
Biosci Biotechnol Biochem. 2019 Mar;83(3):472-481
pubmed: 30488772
Bioinformatics. 2005 Sep 15;21(18):3674-6
pubmed: 16081474
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Theor Appl Genet. 2014 Dec;127(12):2663-78
pubmed: 25331300
Science. 2005 Aug 26;309(5739):1360-2
pubmed: 16123297
Plant Cell Physiol. 2014 Feb;55(2):281-92
pubmed: 24319077
BMC Plant Biol. 2018 Jan 25;18(1):23
pubmed: 29370759
Funct Integr Genomics. 2019 Jan;19(1):171-190
pubmed: 30244303
Front Plant Sci. 2014 Jul 11;5:325
pubmed: 25071808
Nutrients. 2016 Nov 29;8(12):
pubmed: 27916819
Methods Mol Biol. 2000;132:365-86
pubmed: 10547847
Plant Cell Environ. 2018 Sep;41(9):2209-2225
pubmed: 29637575
Nat Biotechnol. 2010 May;28(5):511-5
pubmed: 20436464
Environ Entomol. 2012 Dec;41(6):1435-42
pubmed: 23321090
Front Physiol. 2017 Aug 08;8:578
pubmed: 28848452
PLoS One. 2014 Jan 23;9(1):e86039
pubmed: 24465857
J Exp Bot. 2009;60(10):2859-76
pubmed: 19401412
PLoS One. 2016 Jul 13;11(7):e0159270
pubmed: 27410032
Trends Genet. 2013 Sep;29(9):503-5
pubmed: 23806639
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9971-E9980
pubmed: 30282744
Plant J. 2003 Dec;36(5):577-88
pubmed: 14617060
Physiol Plant. 2017 Jan;159(1):74-92
pubmed: 27514017
Plant Cell Physiol. 2017 Dec 1;58(12):2112-2125
pubmed: 29059445
Plant Signal Behav. 2014;9(5):e28839
pubmed: 24739470
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Plant Physiol. 2011 Oct;157(2):770-89
pubmed: 21813655
Plant Physiol Biochem. 2019 Apr;137:179-188
pubmed: 30798172
BMC Plant Biol. 2018 Feb 5;18(1):27
pubmed: 29402224
Ecol Evol. 2013 Jun;3(6):1440-8
pubmed: 23789057
Front Plant Sci. 2017 Sep 19;8:1506
pubmed: 28974955
Science. 2009 Jan 9;323(5911):240-4
pubmed: 19131626
Front Plant Sci. 2015 Dec 24;6:1117
pubmed: 26734027
Curr Plant Biol. 2020 Jun;22:100149
pubmed: 32494569
PLoS One. 2015 Oct 13;10(10):e0139868
pubmed: 26460497
Front Plant Sci. 2018 Feb 19;9:190
pubmed: 29515606
Plant Physiol. 2018 Feb;176(2):1808-1823
pubmed: 29229698
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Front Plant Sci. 2018 Aug 15;9:924
pubmed: 30158939
BMC Genomics. 2019 Feb 15;20(1):138
pubmed: 30767781
J Integr Plant Biol. 2009 May;51(5):489-99
pubmed: 19508360
New Phytol. 2006;172(3):393-411
pubmed: 17083672
Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7
pubmed: 24174544
PLoS One. 2010 Feb 03;5(2):e9030
pubmed: 20140256
PLoS One. 2016 Feb 16;11(2):e0149301
pubmed: 26881808
Sci Rep. 2017 Sep 11;7(1):11066
pubmed: 28894153
Plant Cell. 2011 Mar;23(3):1107-23
pubmed: 21447788