A synthesis of bacterial and archaeal phenotypic trait data.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
05 06 2020
05 06 2020
Historique:
received:
15
04
2019
accepted:
20
04
2020
entrez:
7
6
2020
pubmed:
7
6
2020
medline:
5
11
2020
Statut:
epublish
Résumé
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients.
Identifiants
pubmed: 32503990
doi: 10.1038/s41597-020-0497-4
pii: 10.1038/s41597-020-0497-4
pmc: PMC7275036
doi:
Types de publication
Dataset
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
170Références
Litchman, E. & Klausmeier, C. A. Trait-Based Community Ecology of Phytoplankton. Annu. Rev. Ecol. Evol. S. 39, 615–639 (2008).
doi: 10.1146/annurev.ecolsys.39.110707.173549
Fierer, N., Barberán, A. & Laughlin, D. C. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol 5, 614 (2014).
doi: 10.3389/fmicb.2014.00614
Krause, S. et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front. Microbiol 5, 251 (2014).
doi: 10.3389/fmicb.2014.00251
Litchman, E. et al. Global biogeochemical impacts of phytoplankton: a trait-based perspective. J. Ecol. 103, 1384–1396 (2015).
doi: 10.1111/1365-2745.12438
Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: A phylogenetic perspective. Science 350, aac9323 (2015).
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
doi: 10.1038/nrmicro.2017.87
Guittar, J., Shade, A. & Litchman, E. Trait-based succession and community assembly of the infant gut microbiome. Nat. Commun. 10, 512 (2019).
doi: 10.1038/s41467-019-08377-w
Hall, E. K. et al. Understanding how microbiomes influence the systems they inhabit. Nat. Microbiol 3, 977–982 (2018).
doi: 10.1038/s41564-018-0201-z
Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).
doi: 10.1038/s41396-019-0510-0
Benson, D. A. et al. GenBank. Nucleic Acids Res 41, D36–D42 (2012).
doi: 10.1093/nar/gks1195
Whitman, W. W. Bergey’s manual of systematics of archaea and bacteria. Wiley (2015).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
doi: 10.1038/nature16489
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).
doi: 10.1038/nature16476
Ulrich, L. E. & Zhulin, I. B. The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38, D401–D407 (2010).
doi: 10.1093/nar/gkp940
Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019, baz049 (2019).
Mendler, K., Chen, H., Parks, D. H., Hug, L. A. & Doxey, A. C. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res 47, 4442–4448 (2019).
doi: 10.1093/nar/gkz246
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37, D5–D15 (2009).
doi: 10.1093/nar/gkn741
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
doi: 10.1038/nbt.4229
Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. figshare, https://doi.org/10.6084/m9.figshare.c.4843290 (2020).
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol 1, 16048 (2016).
doi: 10.1038/nmicrobiol.2016.48
Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001).
doi: 10.1111/j.1574-6976.2001.tb00576.x
Reimer, L. C. et al. BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Res 47, D631–D636 (2019).
doi: 10.1093/nar/gky879
Campedelli, I. et al. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microb 85, e01738–18 (2018).
doi: 10.1128/AEM.01738-18
Corkrey, R. et al. The Biokinetic Spectrum for Temperature. PLoS ONE 11, e0153343 (2016).
doi: 10.1371/journal.pone.0153343
Edwards, K. F., Klausmeier, C. A. & Litchman, E. Nutrient utilization traits of phytoplankton: Ecological Archives E096–202. Ecology 96, 2311–2311 (2015).
doi: 10.1890/14-2252.1
Engqvist, M. K. M. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 18, 177 (2018).
doi: 10.1186/s12866-018-1320-7
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
doi: 10.1126/science.aaf4507
Barberán, A., Caceres Velazquez, H., Jones, S. & Fierer, N. Hiding in Plain Sight: Mining Bacterial Species Records for Phenotypic Trait Information. mSphere 2, e00237–17 (2017).
doi: 10.1128/mSphere.00237-17
Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res 47, D649–D659 (2019).
doi: 10.1093/nar/gky977
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 47, D590–D595 (2019).
doi: 10.1093/nar/gky962
Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology: Temperature-scaling of phytoplankton growth. Limnol. Oceanogr. 62, 1658–1670 (2017).
doi: 10.1002/lno.10523
Mason, M. M. A Comparison of the Maximal Growth Rates of Various Bacteria under Optimal Conditions. J. Bacteriol 29, 103–110 (1935).
doi: 10.1128/JB.29.2.103-110.1935
Richards, M. A. et al. MediaDB: A Database of Microbial Growth Conditions in Defined Media. PLoS ONE 9, e103548 (2014).
doi: 10.1371/journal.pone.0103548
Łukaszewicz, M., Jabłoński, S. & Rodowicz, P. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Micr 65, 1360–1368 (2015).
doi: 10.1099/ijs.0.000065
Michał, B. et al. PhyMet 2: a database and toolkit for phylogenetic and metabolic analyses of methanogens. Env. Microbiol. Rep 10, 378–382 (2018).
doi: 10.1111/1758-2229.12648
Shaaban, H. et al. The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics. Gates Open Research 2, 3 (2018).
doi: 10.12688/gatesopenres.12772.1
Nielsen, S. L. Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms. J. Plankton Res 28, 489–498 (2006).
doi: 10.1093/plankt/fbi134
Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45, D535–D542 (2017).
doi: 10.1093/nar/gkw1017
Brbić, M. et al. The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res 44, 10074–10090 (2016).
pubmed: 27915291
pmcid: 5137458
Roden, E. E. & Jin, Q. Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen. Appl. Environ. Microb 77, 1907–1909 (2011).
doi: 10.1128/AEM.02425-10
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43, D593–D598 (2015).
doi: 10.1093/nar/gku1201
Vieira-Silva, S. & Rocha, E. P. C. The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics. Plos Genet. 6, e1000808 (2010).
doi: 10.1371/journal.pgen.1000808