Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 06 2020
Historique:
received: 05 11 2019
accepted: 12 05 2020
entrez: 7 6 2020
pubmed: 7 6 2020
medline: 22 8 2020
Statut: epublish

Résumé

Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions. FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment - without prior knowledge of fusion partner or breakpoint-location - to long read nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection.

Identifiants

pubmed: 32504042
doi: 10.1038/s41467-020-16641-7
pii: 10.1038/s41467-020-16641-7
pmc: PMC7275081
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2861

Références

Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).
doi: 10.1016/j.celrep.2018.03.050
Gong, Z. et al. Clinical and prognostic significance of e1a2 BCR-ABL1 transcript subtype in chronic myeloid leukemia. Blood Cancer J. 7, e583 (2017).
doi: 10.1038/bcj.2017.62
Latysheva, N. S. & Babu, M. M. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res. 44, 4487–4503 (2016).
doi: 10.1093/nar/gkw282
Meyer, C. et al. Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia 33, 2306–2340 (2019).
doi: 10.1038/s41375-019-0451-7
Winters, A. C. & Bernt, K. M. MLL-Rearranged leukemias-an update on science and clinical approaches. Front. Pediatr. 5, 4 (2017).
doi: 10.3389/fped.2017.00004
Delattre, O. et al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N. Engl. J. Med. 331, 294–299 (1994).
doi: 10.1056/NEJM199408043310503
Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018).
doi: 10.1038/leu.2017.213
Lam, S. W. et al. Molecular analysis of gene fusions in bone and soft tissue tumors by anchored multiplex PCR-based targeted next-generation sequencing. J. Mol. Diagn. 20, 653–663 (2018).
doi: 10.1016/j.jmoldx.2018.05.007
Wang, K. et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31, 151–158 (2017).
doi: 10.1038/leu.2016.166
Stancu, M. C. et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat. Commun. 8, 1–13 (2017).
Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).
doi: 10.1038/nbt.4060
Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).
doi: 10.1038/s41587-020-0407-5
Watson, C. M. et al. Cas9-based enrichment and single-molecule sequencing for precise characterization of genomic duplications. Lab. Invest. 100, 135–146 (2019).
doi: 10.1038/s41374-019-0283-0
Erkizan, H. V. et al. Novel peptide binds EWS-FLI1 and reduces the oncogenic potential in Ewing tumors. Cell Cycle 10, 3397–3408 (2011).
doi: 10.4161/cc.10.19.17734
Kim, J.-S. et al. Lovastatin induces apoptosis in a primitive neuroectodermal tumor cell line in association with RB down-regulation and loss of the G1 checkpoint. Oncogene 19, 6082–6090 (2000).
doi: 10.1038/sj.onc.1204008
Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).
doi: 10.7554/eLife.41305
SdeBlank. SdeBlank/NanoFG. GitHub https://github.com/SdeBlank/NanoFG (2020).
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
doi: 10.1038/nbt.1754
Marshall, A. D. & Grosveld, G. C. Alveolar rhabdomyosarcoma—The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet. Muscle 2, 25 (2012).
doi: 10.1186/2044-5040-2-25
QIAGEN. Overview on whole genome amplification. QIAGEN https://www.qiagen.com/nl/service-and-support/learning-hub/technologies-and-research-topics/wga/overview-on-wga/ (2020).
Kloosterman, W. P. et al. A Systematic analysis of oncogenic gene fusions in primary colon cancer. Cancer Res. 77, 3814–3822 (2017).
doi: 10.1158/0008-5472.CAN-16-3563
Burchill, S. A. Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J. Clin. Pathol. 56, 96–102 (2003).
doi: 10.1136/jcp.56.2.96
Valle-Inclan, J. E. et al. Rapid identification of genomic structural variations with nanopore sequencing enables blood-based cancer monitoring. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/19011932v1 (2019).
Trautmann, M. et al. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene 33, 5006–5016 (2014).
doi: 10.1038/onc.2013.443
Balgobind, B. V. et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114, 2489–2496 (2009).
doi: 10.1182/blood-2009-04-215152
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
doi: 10.1093/bioinformatics/bty191
Li, H. et al. The sequence alignment/map format and SAM tools. Bioinformatics 25, 2078–2079 (2009).
doi: 10.1093/bioinformatics/btp352
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
doi: 10.1038/s41592-018-0001-7
Cunningham, F. et al. Ensembl 2019. Nucleic Acids Res. 47, D745–D751 (2019).
doi: 10.1093/nar/gky1113
Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).
doi: 10.1101/gr.113985.110
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
doi: 10.1093/nar/gks596

Auteurs

Christina Stangl (C)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.
Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands.
Oncode Institute, 3521 AL, Utrecht, Netherlands.

Sam de Blank (S)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Ivo Renkens (I)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Liset Westera (L)

Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.
Dutch Childhood Oncology Group (DCOG), Den Haag, Netherlands.

Tamara Verbeek (T)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Jose Espejo Valle-Inclan (JE)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.
Oncode Institute, 3521 AL, Utrecht, Netherlands.

Rocio Chamorro González (RC)

Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.

Anton G Henssen (AG)

Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Berlin Institute of Health, Berlin, Germany.

Markus J van Roosmalen (MJ)

Oncode Institute, 3521 AL, Utrecht, Netherlands.
Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.

Ronald W Stam (RW)

Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.

Emile E Voest (EE)

Division of Molecular Oncology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands.
Oncode Institute, 3521 AL, Utrecht, Netherlands.

Wigard P Kloosterman (WP)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Gijs van Haaften (G)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Glen R Monroe (GR)

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands. g.monroe@umcutrecht.nl.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH