Transition-metal-free formal cross-coupling of aryl methyl sulfoxides and alcohols via nucleophilic activation of C-S bond.
Alcohols
/ chemistry
Carbon
/ chemistry
Catalysis
Chemistry, Pharmaceutical
/ methods
Ethers
/ chemistry
Heterocyclic Compounds
/ chemistry
Hydrocarbons, Aromatic
/ chemistry
Metals
/ chemistry
Models, Chemical
Molecular Structure
Polycyclic Aromatic Hydrocarbons
/ chemical synthesis
Sulfoxides
/ chemistry
Sulfur
/ chemistry
Transition Elements
/ chemistry
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 06 2020
08 06 2020
Historique:
received:
18
12
2019
accepted:
11
05
2020
entrez:
10
6
2020
pubmed:
10
6
2020
medline:
25
8
2020
Statut:
epublish
Résumé
Employment of sulfoxides as electrophiles in cross-coupling reactions remains underexplored. Herein we report a transition-metal-free cross-coupling strategy utilizing aryl(heteroaryl) methyl sulfoxides and alcohols to afford alkyl aryl(heteroaryl) ethers. Two drug molecules were successfully prepared using this protocol as a key step, emphasizing its potential utility in medicinal chemistry. A DFT computational study suggests that the reaction proceeds via initial addition of the alkoxide to the sulfoxide. This adduct facilitates further intramolecular addition of the alkoxide to the aromatic ring wherein charge on the aromatic system is stabilized by the nearby potassium cation. Rate-determining fragmentation then delivers methyl sulfenate and the aryl or heteroaryl ether. This study establishes the feasibility of nucleophilic addition to an appended sulfoxide as a means to form a bond to aryl(heteroaryl) systems and this modality is expected to find use with many other electrophiles and nucleophiles leading to new cross-coupling processes.
Identifiants
pubmed: 32513962
doi: 10.1038/s41467-020-16713-8
pii: 10.1038/s41467-020-16713-8
pmc: PMC7280189
doi:
Substances chimiques
Alcohols
0
Ethers
0
Heterocyclic Compounds
0
Hydrocarbons, Aromatic
0
Metals
0
Polycyclic Aromatic Hydrocarbons
0
Sulfoxides
0
Transition Elements
0
Sulfur
70FD1KFU70
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2890Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM131902
Pays : United States
Références
Tamao, K. & Miyaura, N. Cross-Coupling Reactions: A Practical Guide (Heidelberg, S. V. B., 2002).
Beletskaya, I. P. & Cheprakov, A. V. Metal Complexes as Catalysts for C-C Cross-Coupling Reactions (Elsevier Ltd., 2003).
Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).
pubmed: 21319862
pmcid: 3075866
doi: 10.1021/cr100327p
So, C. M. & Kwong, F. Y. Palladium-catalyzed cross-coupling reactions of aryl mesylates. Chem. Soc. Rev. 40, 4963–4972 (2011).
pubmed: 21858311
doi: 10.1039/c1cs15114b
Meijere, A. D. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions (Wiley, 2004).
Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002).
pubmed: 11996540
doi: 10.1021/cr000664r
Alberico, D., Scott, M. E. & Lautens, M. Aryl-aryl bond formation by transtion-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).
pubmed: 17212475
doi: 10.1021/cr0509760
Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C-C Bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).
doi: 10.1002/anie.201101379
Henri, D. Cross Coupling and Heck-Type Reactions (Thieme, 2013).
Nishihara, Y., Masayuki, O., Jiao, J. & Chang, N. H. Applied Cross-Coupling Reactions (Springer, 2013).
Sugimura, H., Okamura, H., Miura, M., Yoshida, M. & Takei, H. The coupling reaction of Grignard reagents with unsaturated sulfides catalyzed by nickel complexes. Nippon Kagaku Kaishi 3, 416–424 (1985).
doi: 10.1246/nikkashi.1985.416
Naso, F. Stereospecific synthesis of olefins through sequential cross-coupling reactions. Pure Appl. Chem. 60, 79–88 (1988).
doi: 10.1351/pac198860010079
Luh, T.-Y. & Ni, Z.-J. Transition-metal-mediated C-S bond cleavage reactions. Synthesis 2, 89–103 (1990).
doi: 10.1055/s-1990-26798
Luh, T.-Y. New synthetc applications of the dithioacetal functionality. Acc. Chem. Res. 24, 257–263 (1991).
doi: 10.1021/ar00009a002
Fiandanese, V. Sequential cross-coupling reactions as a versatile synthetic tool. Pure Appl. Chem. 62, 1987–1992 (1990).
doi: 10.1351/pac199062101987
Dubbaka, S. R. & Vogel, P. Organosulfur compounds: electrophilic reagents in transition-metal-catalyzed carbon-carbon bond-forming reactions. Angew. Chem. Int. Ed. 44, 7674–7684 (2005).
doi: 10.1002/anie.200463007
Prokopcova, H. & Kappe, C. O. Copper-catalyzed C-C coupling of thiol esters and boronic acids under aerobic conditions. Angew. Chem. Int. Ed. 47, 3674–3676 (2008).
doi: 10.1002/anie.200800449
Wang, L., He, W. & Yu, Z. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev. 42, 599–621 (2013).
pubmed: 23079733
doi: 10.1039/C2CS35323G
Modha, S. G., Mehta, V. P. & van der Eycken, E. V. Transition metal-catalyzed C-C bond formation via C-S bond cleavage: an overview. Chem. Soc. Rev. 42, 5042–5055 (2013).
pubmed: 23467811
doi: 10.1039/c3cs60041f
Pan, F. & Shi, Z. J. Recent advances in transition-metal-catalyzed C–S activation: from thioester to (Hetero)aryl thioether. ACS Catal. 4, 280–288 (2013).
doi: 10.1021/cs400985m
Gao, K. et al. Cross-coupling of aryl sulfides powered by N-heterocyclic carbene ligands. J. Syn. Org. Chem. Jpn. 74, 1119–1126 (2016).
doi: 10.5059/yukigoseikyokaishi.74.1119
Prokopcova, H. & Kappe, C. O. The Liebeskind-Srogl C-C cross-coupling reaction. Angew. Chem. Int. Ed. 48, 2276–2286 (2009).
doi: 10.1002/anie.200802842
Wenkert, E., Ferreira, T. W. & Michelotti, E. L. Nickel-induced conversion of carbon-sulphur into carbon-carbon bonds. One-step transformations of enol sulphides into olefins and benzenthiol derivatives into alkylarenes and biaryls. J. Chem. Soc. Chem. Comm. https://doi.org/10.1039/C39790000637 (1979).
Yorimitsu, H., Yoshida, Y. & Nogi, K. C–S bond alkynylation of diaryl sulfoxides with terminal alkynes by means of a palladium–NHC catalyst. Synlett 28, 2561–2564 (2017).
doi: 10.1055/s-0036-1591676
Yorimitsu, H., Saito, H. & Nogi, K. Palladium-catalyzed double borylation of diaryl sulfoxides with diboron. Synthesis 49, 4769–4774 (2017).
doi: 10.1055/s-0036-1588848
Yoshida, Y., Otsuka, S., Nogi, K. & Yorimitsu, H. Palladium-catalyzed amination of aryl sulfoxides. Org. Lett. 20, 1134–1137 (2018).
pubmed: 29393652
doi: 10.1021/acs.orglett.8b00060
Yamamoto, K., Otsuka, S., Nogi, K. & Yorimitsu, H. Nickel-catalyzed cross-coupling reaction of aryl sulfoxides with arylzinc reagents: when the leaving group is an oxidant. ACS Catal. 7, 7623–7628 (2017).
doi: 10.1021/acscatal.7b02347
Someya, C. I., Weidauer, M. & Enthaler, S. Nickel-catalyzed C(sp2)–C(sp2) cross coupling reactions of sulfur-functionalities and Grignard reagents. Catal. Lett. 143, 424–431 (2013).
doi: 10.1007/s10562-013-0979-5
Uetake, Y., Niwa, T. & Hosoya, T. Rhodium-catalyzed ipso-borylation of alkylthioarenes via C-S bond cleavage. Org. Lett. 18, 2758–2761 (2016).
pubmed: 27210907
doi: 10.1021/acs.orglett.6b01250
Yang, J., Xiao, J., Chen, T., Yin, S. F. & Han, L. B. Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. Chem. Commun. 52, 12233–12236 (2016).
doi: 10.1039/C6CC06048J
Magano, J. & Dunetz, J. R. Transition Metal-Catalyzed Couplings in Process Chemistry (Wiley, 2014).
Ibigbami, T. B., Dawodu, F. A. & Akinyeye, O. J. Removal of heavy metals from pharmaceutical industrial wastewater effluent by combination of adsorption and chemical precipitation methods. J. Arg. Food Chem. 4, 24–32 (2016).
Reichert, U. Implementing the Guideline on the Specification Limits for Residues of Metal Catalysts or Metal Reagents. MSc, Uni. of Bonn (2009).
Türck, M. & Bern, P. M. Elemental Impurities in Substances for Pharmaceutical Use – Current Trends in Pharmacopoeial Testing [Powerpoint presentation] (2011).
Sun, C. L. & Shi, Z. J. Transition-metal-free coupling reactions. Chem. Rev. 114, 9219–9280 (2014).
pubmed: 25184859
doi: 10.1021/cr400274j
Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C-H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).
pubmed: 28697602
doi: 10.1021/acs.chemrev.6b00657
Kaplan, L. J. & Martin, J. C. Sulfuranes. IX. sulfuranyl substituent parameters. Substituent effects on the reactivity of dialkoxydiarylsulfuranes in the dehydration of alcohols. J. Am. Chem. Soc. 95, 793–798 (1973).
doi: 10.1021/ja00784a026
Franz, J. A. & Martin, J. C. Surfuranes. X. A reagent for the facile cleavage of secondary amides. J. Am. Chem. Soc. 95, 2017–2019 (1973).
doi: 10.1021/ja00787a054
William, M. D., Mindaugas, S., Thomas, E. S., William, L. & Robert, A. S. Versatile C(sp2)-C(sp3) ligand coupling of sulfoxides for the enantioselective synthesis of diarylalkanes. Angew. Chem. Int. Ed. 55, 10013–10016 (2016).
doi: 10.1002/anie.201602264
Wang, J. M. & Hou, T. J. Drug and drug candidate building block analysis. J. Chem. Inf. Model. 50, 55–67 (2010).
pubmed: 20020714
doi: 10.1021/ci900398f
Furukawa, N., Ogawa, S., Kawai, T. & Oae, S. Selective ipso-Substitution in pyridine ring and its application for the synthesis of macrocylces containing both oxa- and thia-Bridges. Tetrahedron Lett. 24, 3243–3246 (1983).
doi: 10.1016/S0040-4039(00)88146-0
Furukawa, N., Ogawa, S. & Kawai, T. ipso-Substitution of a sulphinyl or sulphonyl group attached to pyridine rings and its application for the synthesis of macrocycles. J. Chem. Soc. 8, 1839–1845 (1984).
Zhang, Z. et al. Apoptosis inhibitors [Patent] (China, 2018).
Thomas, J. et al. S1P modulating agents [Patent] (U.S., 2012).
Dondio, G., Macecchini, S. & Raveglia, L. F. Novel method & compounds [Patent] (Italy, 2004).
O’Donnell, J. S. & Schwan, A. L. Generation, structure and reactions of sulfenic acid anions. J. Sulfur Chem. 25, 183–211 (2004).
doi: 10.1080/1741599042000220761
Maitro, G., Prestat, G., Madec, D. & Poli, G. An escapade in the world of sulfenate anions: generation, reactivity and applications in Domino processes. Tetrahedron 21, 1075–1084 (2010).
doi: 10.1016/j.tetasy.2010.05.035
Schwan, A. L. & Söderman, S. C. Discoveries in sulfenic acid anion chemistry. Phosphorus Sulfur Silicon Relat. Elem. 188, 275–286 (2013).
doi: 10.1080/10426507.2012.729116
Sha, S. C. et al. Cation-π interactions in the benzylic arylation of toluenes with bimetallic catalysts. J. Am. Chem. Soc. 140, 12415–12423 (2018).
pubmed: 30185030
pmcid: 6200331
doi: 10.1021/jacs.8b05143
Kim, B. et al. Distal stereocontrol using guanidinylated peptides as multifunctional ligands: desymmetrization of diarylmethanes via Ullman cross-coupling. J. Am. Chem. Soc. 138, 7939–7945 (2016).
pubmed: 27254785
pmcid: 5127171
doi: 10.1021/jacs.6b03444
Dougherty, D. A. The Cation-π Interaction. Acc. Chem. Res. 46, 885–893 (2013).
pubmed: 23214924
doi: 10.1021/ar300265y
Kumar, K. et al. Cation-π interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem. Sci. 9, 2655–2665 (2018).
pubmed: 29719674
pmcid: 5903419
doi: 10.1039/C7SC04905F
Marshall, M. S., Steele, R. P., Thanthiriwatte, K. S. & Sherrill, C. D. Potential energy curves for cation-π interactions: off-axis configurations are also attractive. J. Phys. Chem. A 113, 13628–13632 (2009).
pubmed: 19886621
doi: 10.1021/jp906086x