The CWPS Rubik's cube: Linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains.


Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
10 2020
Historique:
received: 17 03 2020
revised: 22 05 2020
accepted: 28 05 2020
pubmed: 10 6 2020
medline: 14 7 2021
entrez: 10 6 2020
Statut: ppublish

Résumé

The biosynthetic machinery for cell wall polysaccharide (CWPS) production in lactococci is encoded by a large gene cluster, designated cwps. This locus displays considerable variation among lactococcal genomes, previously prompting a classification into three distinct genotypes (A-C). In the present study, the cwps loci of 107 lactococcal strains were compared, revealing the presence of a fourth cwps genotype (type D). Lactococcal CWPSs are comprised of two saccharidic structures: a peptidoglycan-embedded rhamnan backbone polymer to which a surface-exposed, poly/oligosaccharidic side-chain is covalently linked. Chemical structures of the side-chain of seven lactococcal strains were elucidated, highlighting their diverse and strain-specific nature. Furthermore, a link between cwps genotype and chemical structure was derived based on the number of glycosyltransferase-encoding genes in the cwps cluster and the presence of conserved genes encoding the presumed priming glycosyltransferase. This facilitates predictions of several structural features of lactococcal CWPSs including (a) whether the CWPS possesses short oligo/polysaccharide side-chains, (b) the number of component monosaccharides in a given CWPS structure, (c) the order of monosaccharide incorporation into the repeating units of the side-chain (for C-type strains), (d) the presence of Galf and phosphodiester bonds in the side-chain, and (e) the presence of glycerol phosphate substituents in the side-chain.

Identifiants

pubmed: 32515029
doi: 10.1111/mmi.14561
doi:

Substances chimiques

Bacterial Proteins 0
Peptidoglycan 0
Polysaccharides 0
Polysaccharides, Bacterial 0
Glycosyltransferases EC 2.4.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

582-596

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Ainsworth, S., Sadovskaya, I., Vinogradov, E., Courtin, P., Guerardel, Y., Mahony, J., et al. (2014) Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio, 5(3), e00880-14. https://doi.org/10.1128/mBio.00880-14
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021
Chapot-Chartier, M.P., Vinogradov, E., Sadovskaya, I., Andre, G., Mistou, M.Y., Trieu-Cuot, P., et al. (2010) Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. Journal of Biological Chemistry, 285(14), 10464-10471. https://doi.org/10.1074/jbc.M109.082958
Ciucanu, I. and Kerek, F. (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131(2), 209-217. https://doi.org/10.1016/0008-6215(84)85242-8
Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Dupont, K., Janzen, T., Vogensen, F.K., Josephsen, J. and Stuer-Lauridsen, B. (2004) Identification of Lactococcus lactis genes required for bacteriophage adsorption. Applied and Environment Microbiology, 70(10), 5825-5832.
Enright, A.J., Van Dongen, S. and Ouzounis, C.A. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30(7), 1575-1584.
Farenc, C., Spinelli, S., Vinogradov, E., Tremblay, D., Blangy, S., Sadovskaya, I., et al. (2014) Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. Journal of Virology, 88(12), 7005-7015. https://doi.org/10.1128/JVI.00739-14
Gao, Y., Lu, Y., Teng, K.L., Chen, M.L., Zheng, H.J., Zhu, Y.Q., et al. (2011) Complete genome sequence of Lactococcus lactis subsp. lactis CV56, a probiotic strain isolated from the vaginas of healthy women. Journal of Bacteriology, 193(11), 2886-2887. https://doi.org/10.1128/JB.00358-11
Kelleher, P., Bottacini, F., Mahony, J., Kilcawley, K.N. and van Sinderen, D. (2017) Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics, 18(1), 267. https://doi.org/10.1186/s12864-017-3650-5
Kuchta, K., Knizewski, L., Wyrwicz, L.S., Rychlewski, L. and Ginalski, K. (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Research, 37(22), 7701-7714. https://doi.org/10.1093/nar/gkp854
Lindberg, B. and Lonngren, J. (1978) Methylation analysis of complex carbohydrates: general procedure and application for sequence analysis. Methods in Enzymology, 50, 3-33.
Mahony, J., Kot, W., Murphy, J., Ainsworth, S., Neve, H., Hansen, L.H., et al. (2013) Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Applied and Environment Microbiology, 79(14), 4385-4392. https://doi.org/10.1128/AEM.00653-13
Mahony, J., Randazzo, W., Neve, H., Settanni, L. and van Sinderen, D. (2015) Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Applied and Environment Microbiology, 81(10), 3299-3305. https://doi.org/10.1128/AEM.00143-15
Mistou, M.Y., Sutcliffe, I.C. and van Sorge, N.M. (2016) Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiology Reviews, 40(4), 464-479. https://doi.org/10.1093/femsre/fuw006
Ostergaard Breum, S., Neve, H., Heller, K.J. and Vogensen, F.K. (2007) Temperate phages TP901-1 and phiLC3, belonging to the P335 species, apparently use different pathways for DNA injection in Lactococcus lactis subsp. cremoris 3107. FEMS Microbiology Letters, 276(2), 156-164. https://doi.org/10.1111/j.1574-6968.2007.00928.x
Read, S.M., Currie, G. and Bacic, A. (1996) Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydrate Research, 281(2), 187-201.
Sadovskaya, I., Vinogradov, E., Courtin, P., Armalyte, J., Meyrand, M., Giaouris, E., et al. (2017) Another Brick in the Wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. mBio, 8(5). https://doi.org/10.1128/mBio.01303-17
Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques, 34(2), 374-378.
Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
Theodorou, I., Courtin, P., Palussiere, S., Kulakauskas, S., Bidnenko, E., Pechoux, C., et al. (2019) A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. Journal of Biological Chemistry, 294(46), 17612-17625. https://doi.org/10.1074/jbc.RA119.009957
Theodorou, I., Courtin, P., Sadovskaya, I., Palussiere, S., Fenaille, F., Mahony, J., et al. (2020) Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. Journal of Biological Chemistry, 295(16), 5519-5532. https://doi.org/10.1074/jbc.RA119.010844
Vinogradov, E., Sadovskaya, I., Cornelissen, A., van Sinderen, D. (2015) Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17. Carbohydrate Research, 413, 93-99. https://doi.org/10.1016/j.carres.2015.06.001
Vinogradov, E., Sadovskaya, I., Courtin, P., Kulakauskas, S., Grard, T., Mahony, J., et al. (2018) Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydrate Research, 462, 39-44. https://doi.org/10.1016/j.carres.2018.04.002
Vinogradov, E., Sadovskaya, I., Grard, T. and Chapot-Chartier, M.P. (2016) Structural studies of the rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23. Carbohydrate Research, 435, 156-161. https://doi.org/10.1016/j.carres.2016.10.002
Vinogradov, E., Sadovskaya, I., Grard, T., Murphy, J., Mahony, J., Chapot-Chartier, M.P., et al. (2018) Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9. Carbohydrate Research, 461, 25-31. https://doi.org/10.1016/j.carres.2018.03.011
Vinogradov, E., Valence, F., Maes, E., Jebava, I., Chuat, V., Lortal, S., et al. (2013) Structural studies of the cell wall polysaccharides from three strains of Lactobacillus helveticus with different autolytic properties: DPC4571, BROI, and LH1. Carbohydrate Research, 379, 7-12. https://doi.org/10.1016/j.carres.2013.05.020

Auteurs

Jennifer Mahony (J)

School of Microbiology, University College Cork (UCC), Cork, Ireland.
APC Microbiome Ireland, University College Cork, Cork, Ireland.

Cyril Frantzen (C)

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NULS), Ås, Norway.

Evgeny Vinogradov (E)

National Research Council Canada, Institute for Biological Sciences, Ottawa, ON, Canada.

Irina Sadovskaya (I)

Equipe BPA, Université du Littoral-Côte d'Opale, Institut Charles Violette EA 7394 USC Anses, Boulogne-sur-mer, France.

Ilias Theodorou (I)

School of Microbiology, University College Cork (UCC), Cork, Ireland.

Philip Kelleher (P)

School of Microbiology, University College Cork (UCC), Cork, Ireland.
APC Microbiome Ireland, University College Cork, Cork, Ireland.

Marie-Pierre Chapot-Chartier (MP)

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.

Christian Cambillau (C)

School of Microbiology, University College Cork (UCC), Cork, Ireland.
Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Marseille, France.

Helge Holo (H)

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NULS), Ås, Norway.

Douwe van Sinderen (D)

School of Microbiology, University College Cork (UCC), Cork, Ireland.
APC Microbiome Ireland, University College Cork, Cork, Ireland.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Animals Flax Chickens Dietary Supplements Endo-1,4-beta Xylanases

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH