Early-onset nucleotide excision repair disorders with neurological impairment: Clues for early diagnosis and prognostic counseling.
Age of Onset
Child, Preschool
Cockayne Syndrome
/ diagnosis
DNA Helicases
/ genetics
DNA Repair
/ genetics
DNA Repair Enzymes
/ genetics
DNA-Binding Proteins
/ genetics
Early Diagnosis
Endonucleases
/ genetics
Female
Fetus
Genetic Counseling
/ trends
Genetic Predisposition to Disease
/ genetics
Humans
Infant
Infant, Newborn
Male
Mutation
/ genetics
Nervous System Diseases
/ diagnosis
Prognosis
Transcription Factors
/ genetics
Xeroderma Pigmentosum
/ diagnosis
Xeroderma Pigmentosum Group D Protein
/ genetics
COFS
Cockayne syndrome
NER associated disease
XP-CS
neonatal form
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
09
04
2020
revised:
28
05
2020
accepted:
10
06
2020
pubmed:
20
6
2020
medline:
13
7
2021
entrez:
20
6
2020
Statut:
ppublish
Résumé
Nucleotide excision repair associated diseases comprise overlapping phenotypes and a wide range of outcomes. The early stages still remain under-investigated and underdiagnosed, even although an early recognition of the first symptoms is of utmost importance for appropriate care and genetic counseling. We systematically collected clinical and molecular data from the literature and from newly diagnosed NER patients with neurological impairment, presenting clinical symptoms before the age of 12 months, including foetal cases. One hundred and eighty-five patients were included, 13 with specific symptoms during foetal life. Arthrogryposis, microcephaly, cataracts, and skin anomalies are the most frequently reported signs in early subtypes. Non ERCC6/CSB or ERCC8/CSA genes are overrepresented compared to later onset cohorts: 19% patients of this cohort presented variants in ERCC1, ERCC2/XPD, ERCC3/XPB or ERCC5/XPG. ERCC5/XPG is even the most frequently involved gene in foetal cases (10/13 cases, [4/7 families]). In this cohort, the mutated gene, the age of onset, the type of disease, severe global developmental delay, IUGR and skin anomalies were associated with earlier death. This large survey focuses on specific symptoms that should attract the attention of clinicians towards early-onset NER diagnosis in foetal and neonatal period, without waiting for the completeness of classical criteria.
Substances chimiques
DNA-Binding Proteins
0
ERCC8 protein, human
0
Transcription Factors
0
XPBC-ERCC-3 protein
146045-44-5
ERCC1 protein, human
EC 3.1.-
Endonucleases
EC 3.1.-
DNA Helicases
EC 3.6.4.-
Xeroderma Pigmentosum Group D Protein
EC 3.6.4.12
ERCC2 protein, human
EC 5.99.-
DNA Repair Enzymes
EC 6.5.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
251-260Informations de copyright
© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Ferri D, Orioli D, Botta E. Heterogeneity and overlaps in nucleotide excision repair (NER) disorders. Clin Genet. 2019:cge.13545. https://doi.org/10.1111/cge.13545.
Proietti-de-santis L, Laugel V, Prantera G. Cockayne syndrome. Chromatin Signaling and Neurological Disorders. London: Elsevier Inc.; 2019 https://doi.org/10.1016/B978-0-12-813796-3.00007-9.
Kolesnikova O, Radu L, Poterszman A. TFIIH: a multi-subunit complex at the cross-roads of transcription and DNA repair. Adv Protein Chem Struct Biol. 2019;115:21-67. https://doi.org/10.1016/bs.apcsb.2019.01.003.
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol. 2019;20(12):766-784. https://doi.org/10.1038/s41580-019-0169-4.
Bergoglio V, Magnaldo T. Nucleotide excision repair and related human diseases. Genome Dyn. 2006;1:35-52. https://doi.org/10.1159/000092499.
Bukowska B, Karwowski BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci. 2018;195:6-18. https://doi.org/10.1016/j.lfs.2017.12.035.
Rapin I. Disorders of nucleotide excision repair. Handbook of Clinical Neurology, Vol 113. 1st ed. London: Elsevier B.V; 2013. https://doi.org/10.1016/B978-0-444-59565-2.00032-0.
Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res Rev. 2017;33:3-17. https://doi.org/10.1016/j.arr.2016.08.002.
Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42(1):68-84. https://doi.org/10.1002/ajmg.1320420115.
Kubota M, Ohta S, Ando A, et al. Nationwide survey of Cockayne syndrome in Japan: incidence, clinical course and prognosis. Pediatr Int. 2015;57(3):339-347. https://doi.org/10.1111/ped.12635.
Natale V. A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet Part A. 2011;155(5):1081-1095. https://doi.org/10.1002/ajmg.a.33933.
Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134(5-6):161-170. https://doi.org/10.1016/j.mad.2013.02.006.
Faghri S, Tamura D, Kraemer KH, DiGiovanna JJ. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J Med Genet. 2008;45(10):609-621. https://doi.org/10.1136/jmg.2008.058743.
Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388-1396. https://doi.org/10.1016/j.neuroscience.2006.12.020.
Mori T, Yousefzadeh MJ, Faridounnia M, et al. ERCC4 variants identified in a cohort of patients with segmental progeroid syndromes. Hum Mutat. 2018;39(2):255-265. https://doi.org/10.1002/humu.23367.
Hijazi H, Salih MA, Hamad MHA, et al. Pellagra-like condition is xeroderma pigmentosum/Cockayne syndrome complex and niacin confers clinical benefit. Clin Genet. 2015;87(1):56-61. https://doi.org/10.1111/cge.12325.
Zafeiriou DI, Thorel F, Andreou A, et al. Xeroderma pigmentosum group G with severe neurological involvement and features of Cockayne syndrome in infancy. Pediatr Res. 2001;49(3):407-412. https://doi.org/10.1203/00006450-200103000-00016.
Emmert S, Slor H, Busch DB, et al. Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients. J Invest Dermatol. 2002;118(6):972-982. https://doi.org/10.1046/j.1523-1747.2002.01782.x.
Drury S, Boustred C, Tekman M, et al. A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis-further evidence of genotype-phenotype correlation. Am J Med Genet Part A. 2014;164(7):1777-1783. https://doi.org/10.1002/ajmg.a.36506.
Le Van Quyen P, Bonnière M, Boutaud L, et al. Prenatal Diagnosis of Cerebro-Oculo-Facio-Skeletal Syndrome: Report of three Fetuses and Review of the Literature. 2020;2019:1-7. https://doi.org/10.1002/ajmg.a.61520
Wilson BT, Stark Z, Sutton RE, et al. The Cockayne syndrome natural history (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2016;18(5):483-493. https://doi.org/10.1038/gim.2015.110.
Laugel V, Dalloz C, Durand M, et al. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat. 2010;31(2):113-126. https://doi.org/10.1002/humu.21154.
Calmels N, Botta E, Jia N, et al. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet. 2018;55:jmedgenet-2017-104877. https://doi.org/10.1136/jmedgenet-2017-104877.
Stenson PD, Mort M, Ball EV, et al. The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136(6):665-677. https://doi.org/10.1007/s00439-017-1779-6.
Calmels N, Greff G, Obringer C, et al. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing. Orphanet J Rare Dis. 2016;11(1):26. https://doi.org/10.1186/s13023-016-0408-0.
Miguet M, Thevenon J, Laugel V, et al. Mutations in the ERCC2 (XPD) gene associated with severe fetal ichthyosis and dysmorphic features. Prenat Diagn. 2016;36(13):1276-1279. https://doi.org/10.1002/pd.4965.
Laugel V, Dalloz C, Stary A, et al. Deletion of 5′ sequences of the CSB gene provides insight into the pathophysiology of Cockayne syndrome. Eur J Hum Genet. 2008;16(3):320-327. https://doi.org/10.1038/sj.ejhg.5201991.
Koob M, Laugel V, Durand M, et al. Neuroimaging in Cockayne syndrome. Am J Neuroradiol. 2010;31(9):1623-1630. https://doi.org/10.3174/ajnr.A2135.