SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: Insights into functional evolution and human genomics.
Amino Acid Transport Systems, Neutral
/ chemistry
Angiotensin-Converting Enzyme 2
Betacoronavirus
/ chemistry
Black People
/ genetics
COVID-19
Coronavirus Infections
/ metabolism
Coronavirus Nucleocapsid Proteins
Databases, Protein
Genetic Predisposition to Disease
Genetic Variation
Host-Pathogen Interactions
Humans
Male
Molecular Dynamics Simulation
Nucleocapsid Proteins
/ chemistry
Pandemics
Peptidyl-Dipeptidase A
/ chemistry
Phosphoproteins
Pneumonia, Viral
/ metabolism
Protein Interaction Maps
Protein Processing, Post-Translational
Proteome
SARS-CoV-2
Sequence Homology, Amino Acid
Serine Endopeptidases
/ chemistry
Spike Glycoprotein, Coronavirus
/ chemistry
COVID-19
RNA virus
human genetics
molecular dynamics
molecular evolution
post-translational modification (PTM)
protein structure
receptor structure-function
severe acute respiratory coronavirus 2 (SARS-CoV-2)
virus entry
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
14 08 2020
14 08 2020
Historique:
received:
22
06
2020
revised:
23
06
2020
pubmed:
27
6
2020
medline:
28
8
2020
entrez:
27
6
2020
Statut:
ppublish
Résumé
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged the speed at which laboratories can discover the viral composition and study health outcomes. The small ∼30-kb ssRNA genome of coronaviruses makes them adept at cross-species spread while enabling a robust understanding of all of the proteins the viral genome encodes. We have employed protein modeling, molecular dynamics simulations, evolutionary mapping, and 3D printing to gain a full proteome- and dynamicome-level understanding of SARS-CoV-2. We established the Viral Integrated Structural Evolution Dynamic Database (VIStEDD at RRID:SCR_018793) to facilitate future discoveries and educational use. Here, we highlight the use of VIStEDD for nsp6, nucleocapsid (N), and spike (S) surface glycoprotein. For both nsp6 and N, we found highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we developed a quantitative dynamics cross-correlation matrix to gain insights into its interactions with the angiotensin I-converting enzyme 2 (ACE2)-solute carrier family 6 member 19 (SLC6A19) dimer. Using this quantitative matrix, we elucidated 47 potential functional missense variants from genomic databases within ACE2/SLC6A19/transmembrane serine protease 2 (TMPRSS2), warranting genomic enrichment analyses in SARS-CoV-2 patients. These variants had ultralow frequency but existed in males hemizygous for ACE2. Two ACE2 noncoding variants (rs4646118 and rs143185769) present in ∼9% of individuals of African descent may regulate ACE2 expression and may be associated with increased susceptibility of African Americans to SARS-CoV-2. We propose that this SARS-CoV-2 database may aid research into the ongoing pandemic.
Identifiants
pubmed: 32587094
pii: S0021-9258(17)48472-9
doi: 10.1074/jbc.RA120.014873
pmc: PMC7450099
doi:
Substances chimiques
Amino Acid Transport Systems, Neutral
0
Coronavirus Nucleocapsid Proteins
0
Nucleocapsid Proteins
0
Phosphoproteins
0
Proteome
0
SLC6A19 protein, human
0
Spike Glycoprotein, Coronavirus
0
nucleocapsid phosphoprotein, SARS-CoV-2
0
spike protein, SARS-CoV-2
0
Peptidyl-Dipeptidase A
EC 3.4.15.1
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Serine Endopeptidases
EC 3.4.21.-
TMPRSS2 protein, human
EC 3.4.21.-
Banques de données
PDB
['6m71', '7btf', '6CRW', '6NB6', '5X58', '6M17']
figshare
['10.6084/m9.figshare.12298790.v1']
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
11742-11753Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM108618
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2020 Gupta et al.
Déclaration de conflit d'intérêts
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Références
J Am Soc Nephrol. 2018 May;29(5):1525-1535
pubmed: 29476007
Viruses. 2012 Jun;4(6):1011-33
pubmed: 22816037
Future Virol. 2018 Jun;13(6):405-430
pubmed: 32201497
Lancet Infect Dis. 2020 May;20(5):533-534
pubmed: 32087114
JAMA Cardiol. 2020 Jul 1;5(7):802-810
pubmed: 32211816
Gen Comp Endocrinol. 2015 May 1;215:106-16
pubmed: 25260253
Science. 2020 Mar 27;367(6485):1444-1448
pubmed: 32132184
Nat Methods. 2010 Apr;7(4):248-9
pubmed: 20354512
J Med Virol. 2006 Nov;78(11):1365-73
pubmed: 16998888
J Virol. 2006 Mar;80(5):2326-36
pubmed: 16474139
Infect Genet Evol. 2008 Jul;8(4):397-405
pubmed: 17881296
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
Am J Clin Pathol. 2020 Mar 9;153(4):420-421
pubmed: 32053148
Proteins. 2009;77 Suppl 9:114-22
pubmed: 19768677
Acta Pharm Sin B. 2020 May;10(5):766-788
pubmed: 32292689
Pflugers Arch. 2009 Jan;457(3):589-98
pubmed: 18026982
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4
pubmed: 12824425
J Proteome Res. 2020 Apr 3;19(4):1351-1360
pubmed: 32200634
Eur Respir J. 2013 Jul;42(1):198-210
pubmed: 23100504
J Med Virol. 2020 May;92(5):522-528
pubmed: 32027036
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
Lancet. 2020 Mar 28;395(10229):1054-1062
pubmed: 32171076
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
Proteomics. 2004 Jun;4(6):1633-49
pubmed: 15174133
Bioinformatics. 2015 Aug 15;31(16):2745-7
pubmed: 25851949
Nucleic Acids Res. 2012 Jan;40(Database issue):D242-51
pubmed: 22110040
Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64
pubmed: 14651994
J Med Genet. 2006 Apr;43(4):295-305
pubmed: 16014699
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10157-E10166
pubmed: 30297408
Nat Rev Immunol. 2020 Jun;20(6):351
pubmed: 32303698
mBio. 2013 Aug 13;4(4):
pubmed: 23943763
J Gen Virol. 2005 May;86(Pt 5):1423-1434
pubmed: 15831954
Nature. 2015 Feb 19;518(7539):317-30
pubmed: 25693563
Mol Biol Evol. 2011 Oct;28(10):2731-9
pubmed: 21546353
J Pathol. 2004 Jun;203(2):631-7
pubmed: 15141377
J Virol. 2005 Sep;79(17):11476-86
pubmed: 16103198
Genome Res. 2012 Sep;22(9):1790-7
pubmed: 22955989
J Biol Chem. 1994 Jul 1;269(26):17577-85
pubmed: 8021266
Autophagy. 2014 Aug;10(8):1426-41
pubmed: 24991833
Nat Med. 2005 Aug;11(8):875-9
pubmed: 16007097
J Comput Chem. 2015 May 15;36(13):996-1007
pubmed: 25824339
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Lancet. 2020 Mar 28;395(10229):1033-1034
pubmed: 32192578
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
J Clin Invest. 2013 Jul;123(7):3025-36
pubmed: 23921127
J Mol Model. 2017 Mar;23(3):75
pubmed: 28204942
Asian Pac J Allergy Immunol. 2020 Mar;38(1):1-9
pubmed: 32105090
J Comput Chem. 2003 Dec;24(16):1999-2012
pubmed: 14531054
Nature. 2020 Jul;583(7816):459-468
pubmed: 32353859
Nat Med. 2020 May;26(5):681-687
pubmed: 32327758