Patient-specific and hyper-realistic phantom for an intubation simulator with a replaceable difficult airway of a toddler using 3D printing.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 06 2020
30 06 2020
Historique:
received:
19
03
2020
accepted:
09
06
2020
entrez:
2
7
2020
pubmed:
2
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Difficult tracheal intubation is the third most common respiratory-related adverse co-morbid episode and can lead to death or brain damage. Since difficult tracheal intubation is less frequent, trainees have fewer opportunities to perform difficult tracheal intubation; this leads to the need to practice with a hyper-realistic intubation simulator. However, conventional simulators are expensive, relatively stiffer than the human airway, and have a lack of diversity in terms of disease variations and anatomic reproducibility. Therefore, we proposed the development of a patient-specific and hyper-realistic difficult tracheal intubation simulator using three-dimensional printing technology and silicone moulding and to test the feasibility of patient-specific and hyper-realistic difficult intubation simulation using 3D phantom for the trainee. This difficult tracheal intubation phantom can provide a realistic simulation experience of managing various difficult tracheal intubation cases to trainees, which could minimise unexpected tissue damage before anaesthesia. To achieve a more realistic simulation, a patient-specific phantom was fabricated to mimic human tissue with realistic mouth opening and accurate difficult airway shape. This has great potential for the medical education and training field.
Identifiants
pubmed: 32606342
doi: 10.1038/s41598-020-67575-5
pii: 10.1038/s41598-020-67575-5
pmc: PMC7326915
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10631Références
Arne, J. et al. Preoperative assessment for difficult intubation in general and ENT surgery: predictive value of a clinical multivariate risk index. Br. J. Anaesth. 80, 140–146. https://doi.org/10.1093/bja/80.2.140 (1998).
doi: 10.1093/bja/80.2.140
pubmed: 9602574
L’Hermite, J. et al. The Simplified Predictive Intubation Difficulty Score: a new weighted score for difficult airway assessment. Eur. J. Anaesthesiol. 26, 1003–1009. https://doi.org/10.1097/EJA.0b013e32832efc71 (2009).
doi: 10.1097/EJA.0b013e32832efc71
pubmed: 19593145
Pedersen, T. H. et al. A randomised, controlled trial evaluating a low cost, 3D-printed bronchoscopy simulator. Anaesthesia 72, 1005–1009. https://doi.org/10.1111/anae.13951 (2017).
doi: 10.1111/anae.13951
pubmed: 28603907
Kavanagh, K. R. et al. Pediatric laryngeal simulator using 3D printed models: a novel technique. Laryngoscope 127, E132–E137. https://doi.org/10.1002/lary.26326 (2017).
doi: 10.1002/lary.26326
pubmed: 27730649
Heinrich, S. et al. Incidence and predictors of difficult laryngoscopy in 11,219 pediatric anesthesia procedures. Paediatr. Anaesth. 22, 729–736. https://doi.org/10.1111/j.1460-9592.2012.03813.x (2012).
doi: 10.1111/j.1460-9592.2012.03813.x
pubmed: 22340664
Byrne, T., Yong, S. A. & Steinfort, D. P. Development and assessment of a low-cost 3D-printed airway model for bronchoscopy simulation training. J. Bronchol. Interv. Pulmonol. 23, 251–254. https://doi.org/10.1097/LBR.0000000000000257 (2016).
doi: 10.1097/LBR.0000000000000257
Kim, G. B. et al. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J. Radiol. 17, 182–197. https://doi.org/10.3348/kjr.2016.17.2.182 (2016).
doi: 10.3348/kjr.2016.17.2.182
pubmed: 26957903
pmcid: 4781757
Bernhard, J. C. et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 34, 337–345. https://doi.org/10.1007/s00345-015-1632-2 (2016).
doi: 10.1007/s00345-015-1632-2
pubmed: 26162845
Al-Ramahi, J. et al. Development of an innovative 3D printed rigid bronchoscopy training model. Ann. Otol. Rhinol. Laryngol. 125, 965–969. https://doi.org/10.1177/0003489416667742 (2016).
doi: 10.1177/0003489416667742
pubmed: 27605436
Kan, S. H. et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am. J. Hum. Genet. 70, 472–486. https://doi.org/10.1086/338758 (2002).
doi: 10.1086/338758
pubmed: 11781872
pmcid: 384921
Kim, S. H., Kim, D. H., Kang, H., Suk, E. H. & Park, P. H. Estimation of teeth-to-vallecula distance for prediction of optimal oropharyngeal airway length in young children. Br. J. Anaesth. 107, 769–773. https://doi.org/10.1093/bja/aer266 (2011).
doi: 10.1093/bja/aer266
pubmed: 21862492
Kim, S. H. et al. Estimation of the nares-to-epiglottis distance and the nares-to-vocal cords distance in young children. Br. J. Anaesth. 109, 816–820. https://doi.org/10.1093/bja/aes267 (2012).
doi: 10.1093/bja/aes267
pubmed: 22864519
Flin, R., Patey, R., Glavin, R. & Maran, N. Anaesthetists’ non-technical skills. Br. J. Anaesth. 105, 38–44. https://doi.org/10.1093/bja/aeq134 (2010).
doi: 10.1093/bja/aeq134
pubmed: 20522911
Hamstra, S. J., Brydges, R., Hatala, R., Zendejas, B. & Cook, D. A. Reconsidering fidelity in simulation-based training. Acad Med. 89, 387–392. https://doi.org/10.1097/ACM.0000000000000130 (2014).
doi: 10.1097/ACM.0000000000000130
pubmed: 24448038
Schievano, S. et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242, 490–497. https://doi.org/10.1148/radiol.2422051994 (2007).
doi: 10.1148/radiol.2422051994
pubmed: 17255420
Kim, S. H. et al. Impact of a custom-made 3D printed ergonomic grip for direct laryngoscopy on novice intubation performance in a simulated easy and difficult airway scenario—a manikin study. PLoS ONE 13, e0207445. https://doi.org/10.1371/journal.pone.0207445 (2018).
doi: 10.1371/journal.pone.0207445
pubmed: 30458013
pmcid: 6245686
Tam, M. D., Laycock, S. D., Jayne, D., Babar, J. & Noble, B. 3-D printouts of the tracheobronchial tree generated from CT images as an aid to management in a case of tracheobronchial chondromalacia caused by relapsing polychondritis. J. Radiol. Case Rep. 7, 34–43. https://doi.org/10.3941/jrcr.v7i8.1390 (2013).
doi: 10.3941/jrcr.v7i8.1390
pubmed: 24421951
pmcid: 3888178
Wilson, C. A. et al. Printed three-dimensional airway model assists planning of single-lung ventilation in a small child. Br. J. Anaesth. 115, 616–620. https://doi.org/10.1093/bja/aev305 (2015).
doi: 10.1093/bja/aev305
pubmed: 26385670
Geelhoed, G. W. New approaches to serious infections in the surgical patient. Clin. Ther. 12(Suppl B), 2–8 (1990).
pubmed: 2369753