The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 06 2020
Historique:
received: 09 12 2019
accepted: 09 06 2020
entrez: 2 7 2020
pubmed: 2 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA

Identifiants

pubmed: 32606421
doi: 10.1038/s41598-020-67537-x
pii: 10.1038/s41598-020-67537-x
pmc: PMC7326986
doi:

Substances chimiques

Gibberellins 0
Plant Proteins 0
Repressor Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10645

Références

1FAO. Crops production database. FAOSTAT. Latest update: 04/03/2020. Food and Agriculture Organization of the United Nations. Rome https://www.fao.org/faostat (2018).
Willcox, J. K., Catignani, G. L. & Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43, 1–18. https://doi.org/10.1080/10408690390826437 (2003).
doi: 10.1080/10408690390826437 pubmed: 12587984
Bai, Y. L. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann. Bot. 100, 1085–1094. https://doi.org/10.1093/aob/mcm150 (2007).
doi: 10.1093/aob/mcm150 pubmed: 17717024 pmcid: 2759208
Gascuel, Q., Diretto, G., Monforte, A. J., Fortes, A. M. & Granell, A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00652 (2017).
doi: 10.3389/fpls.2017.00652 pubmed: 28553296 pmcid: 5427129
Handa, A. K., Anwar, R. & Mattoo, A. K. in Fruit Ripening Physiology, Signaling and Genomics (eds Nath, P. et al.) 259–290 (CABI, 2014).
van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00227 (2014).
doi: 10.3389/fpls.2014.00227 pubmed: 24904622 pmcid: 4034497
Okello, R. C. O., Heuvelink, E., de Visser, P. H. B., Struik, P. C. & Marcelis, L. F. M. What drives fruit growth?. Funct. Plant Biol. 42(9), 817–827. https://doi.org/10.1071/fp15060 (2015).
doi: 10.1071/fp15060 pubmed: 32480724
Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95, 439–447. https://doi.org/10.1093/aob/mci042 (2005).
doi: 10.1093/aob/mci042 pubmed: 15582899
Smith, M. R., Rao, I. M. & Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01889 (2018).
doi: 10.3389/fpls.2018.01889 pubmed: 30713543 pmcid: 6306447
Osorio, S., Ruan, Y. L. & Fernie, A. R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00516 (2014).
doi: 10.3389/fpls.2014.00516 pubmed: 25339963 pmcid: 4186278
Ho, L. C. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation Ito the quality and yield of tomato. J. Exp. Bot. 47, 1239–1243. https://doi.org/10.1093/jxb/47.Special_Issue.1239 (1996).
doi: 10.1093/jxb/47.Special_Issue.1239 pubmed: 21245255
Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246. https://doi.org/10.1016/j.pbi.2004.03.014 (2004).
doi: 10.1016/j.pbi.2004.03.014 pubmed: 15134743
Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396. https://doi.org/10.1104/pp.106.088534 (2006).
doi: 10.1104/pp.106.088534 pubmed: 17071647 pmcid: 1676044
Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528. https://doi.org/10.1104/pp.108.133967 (2009).
doi: 10.1104/pp.108.133967 pubmed: 19144766 pmcid: 2649409
Ozga, J. A. & Reinecke, D. M. Hormonal interactions in fruit development. J. Plant Growth Regul. 22, 73–81. https://doi.org/10.1007/s00344-003-0024-9 (2003).
doi: 10.1007/s00344-003-0024-9
Liu, S. Y. et al. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci. Rep. https://doi.org/10.1038/s41598-018-21315-y (2018).
doi: 10.1038/s41598-018-21315-y pubmed: 30591709 pmcid: 6308234
Serrani, J. C., Sanjuan, R., Ruiz-Rivero, O., Fos, M. & Garcia-Martinez, J. L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145, 246–257. https://doi.org/10.1104/pp.107.098335 (2007).
doi: 10.1104/pp.107.098335 pubmed: 17660355 pmcid: 1976567
McAtee, P., Karim, S., Schaffer, R. & David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00079 (2013).
doi: 10.3389/fpls.2013.00079 pubmed: 23616786 pmcid: 3628358
Kataoka, K., Yashiro, Y., Habu, T., Sunamoto, K. & Kitajima, A. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123, 228–233. https://doi.org/10.1016/j.scienta.2009.09.001 (2009).
doi: 10.1016/j.scienta.2009.09.001
Zhang, C. X., Tanabe, K., Tamura, F., Itai, A. & Yoshida, M. Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52, 161–172. https://doi.org/10.1007/s10725-007-9187-x (2007).
doi: 10.1007/s10725-007-9187-x
Shinozaki, Y. et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. https://doi.org/10.1038/s41467-017-02782-9 (2018).
doi: 10.1038/s41467-017-02782-9 pubmed: 29371663 pmcid: 5785480
Ariizumi, T., Shinozaki, Y. & Ezura, H. Genes that influence yield in tomato. Breed. Sci. 63, 3–13. https://doi.org/10.1270/jsbbs.63.3 (2013).
doi: 10.1270/jsbbs.63.3 pubmed: 23641176 pmcid: 3621442
Azzi, L. et al. Fruit growth-related genes in tomato. J. Exp. Bot. 66, 1075–1086. https://doi.org/10.1093/jxb/eru527 (2015).
doi: 10.1093/jxb/eru527 pubmed: 25573859
Lemaire-Chamley, M. et al. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139, 750–769. https://doi.org/10.1104/pp.105.063719 (2005).
doi: 10.1104/pp.105.063719 pubmed: 16183847 pmcid: 1255993
Tanksley, S. D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16, S181–S189. https://doi.org/10.1105/tpc.018119 (2004).
doi: 10.1105/tpc.018119 pubmed: 15131251 pmcid: 2643388
Allan, A. C. & Espley, R. V. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci. 23, 693–705. https://doi.org/10.1016/j.tplants.2018.06.001 (2018).
doi: 10.1016/j.tplants.2018.06.001 pubmed: 30033210
Karlova, R. et al. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 65, 4527–4541. https://doi.org/10.1093/jxb/eru316 (2014).
doi: 10.1093/jxb/eru316 pubmed: 25080453
Rohrmann, J. et al. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 68, 999–1013. https://doi.org/10.1111/j.1365-313X.2011.04750.x (2011).
doi: 10.1111/j.1365-313X.2011.04750.x pubmed: 21851430
Zhang, S. B. et al. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. https://doi.org/10.1038/srep23173 (2016).
doi: 10.1038/srep23173 pubmed: 28720770 pmcid: 5515987
Corrales, A. R. et al. Characterization of tomato Cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65, 995–1012. https://doi.org/10.1093/jxb/ert451 (2014).
doi: 10.1093/jxb/ert451 pubmed: 24399177
Renau-Morata, B. et al. Ectopic Expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions. Front. Plant Sci. 8, 18. https://doi.org/10.3389/fpls.2017.00660 (2017).
doi: 10.3389/fpls.2017.00660
Guillet, C. et al. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS ONE https://doi.org/10.1371/journal.pone.0036795 (2012).
doi: 10.1371/journal.pone.0036795 pubmed: 22615815 pmcid: 3355170
Bourdon, M. et al. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139, 3817–3826. https://doi.org/10.1242/dev.084053 (2012).
doi: 10.1242/dev.084053 pubmed: 22991446
de Jong, M. et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp. Bot. 66, 3405–3416. https://doi.org/10.1093/jxb/erv152 (2015).
doi: 10.1093/jxb/erv152 pubmed: 25883382 pmcid: 4449553
Serrani, J. C., Fos, M., Atares, A. & Garcia-Martinez, J. L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J. Plant Growth Regul. 26, 211–221. https://doi.org/10.1007/s00344-007-9014-7 (2007).
doi: 10.1007/s00344-007-9014-7
Srivastava, A. & Handa, A. K. Hormonal regulation of tomato fruit development: a molecular perspective. J. Plant Growth Regul. 24, 67–82. https://doi.org/10.1007/s00344-005-0015-0 (2005).
doi: 10.1007/s00344-005-0015-0
Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., Hernandez, M. & Perez, J. A. Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J. Plant Growth Regul. 26, 329–340. https://doi.org/10.1007/s00344-007-9019-2 (2007).
doi: 10.1007/s00344-007-9019-2
Li, Z. M. et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 63, 1155–1166. https://doi.org/10.1093/jxb/err329 (2012).
doi: 10.1093/jxb/err329 pubmed: 22105847
Wang, F., Sanz, A., Brenner, M. L. & Smith, A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101, 321–327. https://doi.org/10.1104/pp.101.1.321 (1993).
doi: 10.1104/pp.101.1.321 pubmed: 12231688 pmcid: 158679
Pattison, R. J. et al. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol. 168, 1684-U1002. https://doi.org/10.1104/pp.15.00287 (2015).
doi: 10.1104/pp.15.00287 pubmed: 26099271 pmcid: 4528740
Musseau, C. et al. Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00988 (2017).
doi: 10.3389/fpls.2017.00988 pubmed: 28659942 pmcid: 5467581
Shiota, H., Sudoh, T. & Tanaka, I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci. 171, 277–285. https://doi.org/10.1016/j.plantsci.2006.03.021 (2006).
doi: 10.1016/j.plantsci.2006.03.021
Wang, L. et al. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biol. https://doi.org/10.1186/s12870-017-1212-2 (2017).
doi: 10.1186/s12870-017-1212-2 pubmed: 29284401 pmcid: 5747103
Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields?. Plant Cell Environ. 29, 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x (2006).
doi: 10.1111/j.1365-3040.2005.01493.x pubmed: 17080588
D’Aoust, M. A., Yelle, S. & Nguyen-Quoc, B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11, 2407–2418. https://doi.org/10.1105/tpc.11.12.2407 (1999).
doi: 10.1105/tpc.11.12.2407 pubmed: 10590167 pmcid: 144148
Liu, T., Hu, Y. Q. & Li, X. X. Characterization of a chestnut FLORICAULA/LEAFY homologous gene. Afr. J. Biotechnol. 10, 3978–3985 (2011).
Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789. https://doi.org/10.1126/science.1101666 (2004).
doi: 10.1126/science.1101666 pubmed: 15375271
Ikeda, H. et al. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiol. 57, 1257–1270. https://doi.org/10.1093/pcp/pcw075 (2016).
doi: 10.1093/pcp/pcw075 pubmed: 27076398
Ho, L. C. Partitioning of assimilates in fruiting tomato plants. Plant Growth Regul. 2, 277–285. https://doi.org/10.1007/bf00027287 (1984).
doi: 10.1007/bf00027287
Beauvoit, B. et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 122, 1–21. https://doi.org/10.1093/aob/mcy057 (2018).
doi: 10.1093/aob/mcy057 pubmed: 29718072 pmcid: 6025238
Corrales, A. R. et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ. 40, 748–764. https://doi.org/10.1111/pce.12894 (2017).
doi: 10.1111/pce.12894 pubmed: 28044345
Carrari, F. & Fernie, A. R. Metabolic regulation underlying tomato fruit development. J. Exp. Bot. 57, 1883–1897. https://doi.org/10.1093/jxb/erj020 (2006).
doi: 10.1093/jxb/erj020 pubmed: 16449380
Osorio, S. et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiol. 161, 628–643. https://doi.org/10.1104/pp.112.211094 (2013).
doi: 10.1104/pp.112.211094 pubmed: 23250627
Gillaspy, G., Bendavid, H. & Gruissem, W. Fruits—a developmental perspective. Plant Cell 5, 1439–1451. https://doi.org/10.1105/tpc.5.10.1439 (1993).
doi: 10.1105/tpc.5.10.1439 pubmed: 12271039 pmcid: 160374
Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A. & Garcia-Martinez, J. L. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160, 1581–1596. https://doi.org/10.1104/pp.112.204552 (2012).
doi: 10.1104/pp.112.204552 pubmed: 22942390 pmcid: 3490602
Chen, S. et al. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic. Res. https://doi.org/10.1038/hortres.2016.59 (2016).
doi: 10.1038/hortres.2016.59 pubmed: 28018605 pmcid: 5142509
Mignolli, F., Vidoz, M. L., Picciarelli, P. & Mariotti, L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiol. Plant. 165, 768–779. https://doi.org/10.1111/ppl.12770 (2019).
doi: 10.1111/ppl.12770 pubmed: 29888535
De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C. & Vriezen, W. H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 57, 160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x (2009).
doi: 10.1111/j.1365-313X.2008.03671.x pubmed: 18778404
Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238. https://doi.org/10.1007/s00122-002-0928-y (2003).
doi: 10.1007/s00122-002-0928-y pubmed: 12582848
Renau-Morata, R. et al. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crops Prod. 46, 97–104. https://doi.org/10.1016/j.indcrop.2013.01.013 (2013).
doi: 10.1016/j.indcrop.2013.01.013
Cebolla-Cornejo, J., Valcarcel, M., Herrero-Martinez, J. M., Rosello, S. & Nuez, F. High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 33, 2416–2423. https://doi.org/10.1002/elps.201100640 (2012).
doi: 10.1002/elps.201100640 pubmed: 22887163
Nebauer, S. G. et al. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. Plant Physiol. Biochem. 80, 105–113. https://doi.org/10.1016/j.plaphy.2014.03.032 (2014).
doi: 10.1016/j.plaphy.2014.03.032 pubmed: 24747724
Hoffman, N. E., Ko, K., Milkowski, D. & Pichersky, E. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene UBI3. Plant Mol. Biol. 17, 1189–1201. https://doi.org/10.1007/bf00028735 (1991).
doi: 10.1007/bf00028735 pubmed: 1657246
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
doi: 10.1006/meth.2001.1262 pubmed: 11846609 pmcid: 11846609
Miedes, E. & Lorences, E. P. Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. J. Sci. Food Agric. 86, 1359–1364 (2006).
doi: 10.1002/jsfa.2522

Auteurs

Begoña Renau-Morata (B)

Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain.

Laura Carrillo (L)

Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain.

Jaime Cebolla-Cornejo (J)

Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain.

Rosa V Molina (RV)

Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain.

Raúl Martí (R)

Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain.

José Domínguez-Figueroa (J)

Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain.

Jesús Vicente-Carbajosa (J)

Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain.

Joaquín Medina (J)

Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain. medina.joaquin@inia.es.

Sergio G Nebauer (SG)

Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain. sergonne@bvg.upv.es.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH