Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 07 2020
Historique:
received: 19 11 2019
accepted: 12 06 2020
entrez: 3 7 2020
pubmed: 3 7 2020
medline: 15 12 2020
Statut: epublish

Résumé

All organisms have stress response systems to protect themselves from various environmental stresses, and regulation of membrane lipids is thought to play an important role in acquirement of stress tolerance. Complex sphingolipids in the yeast Saccharomyces cerevisiae are classified into three types based on differences in the structure of the polar head group, and the compositions and quantities of complex sphingolipids in biomembranes are tightly regulated. In this study, we found that the accumulation of inositol phosphorylceramides (IPCs) due to a defect of mannosylinositol phosphorylceramide biosynthesis (sur1∆ csh1∆), i.e., disruption of the balance of the composition of complex sphingolipids, causes hypersensitivity to low pH conditions (pH 4.0-2.5). Furthermore, screening of suppressor mutations that confer low pH resistance to sur1∆ csh1∆ cells revealed that a change in ergosterol homeostasis at plasma membranes can rescue the hypersensitivity, suggesting the functional relationship between complex sphingolipids and ergosterol under low pH conditions. Under low pH conditions, wild-type yeast cells exhibited decreases in IPC levels, and forced enhancement of the biosynthesis of IPCs causes low pH hypersensitivity. Thus, it was suggested that the accumulation of IPCs is detrimental to yeast under low pH conditions, and downregulation of IPC levels is one of the adaptation mechanisms for low pH conditions.

Identifiants

pubmed: 32612142
doi: 10.1038/s41598-020-67734-8
pii: 10.1038/s41598-020-67734-8
pmc: PMC7329899
doi:

Substances chimiques

Glycosphingolipids 0
Membrane Proteins 0
Saccharomyces cerevisiae Proteins 0
inositolphosphoceramides 0
Glycosyltransferases EC 2.4.-
SUR1 protein, S cerevisiae EC 2.4.-.-
Csh1 protein, S cerevisiae EC 2.4.1.-
Mannosyltransferases EC 2.4.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10792

Références

Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257. https://doi.org/10.1091/mbc.11.12.4241 (2000).
doi: 10.1091/mbc.11.12.4241 pubmed: 11102521 pmcid: 15070
Jenkins, G. M. et al. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272, 32566–32572. https://doi.org/10.1074/jbc.272.51.32566 (1997).
doi: 10.1074/jbc.272.51.32566 pubmed: 9405471
Dickson, R. C., Sumanasekera, C. & Lester, R. L. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45, 447–465. https://doi.org/10.1016/j.plipres.2006.03.004 (2006).
doi: 10.1016/j.plipres.2006.03.004 pubmed: 16730802
Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697. https://doi.org/10.1101/cshperspect.a004697 (2011).
doi: 10.1101/cshperspect.a004697 pubmed: 21628426 pmcid: 3179338
Mollinedo, F. Lipid raft involvement in yeast cell growth and death. Front. Oncol. 2, 140. https://doi.org/10.3389/fonc.2012.00140 (2012).
doi: 10.3389/fonc.2012.00140 pubmed: 23087902 pmcid: 3467458
Tanigawa, M., Kihara, A., Terashima, M., Takahara, T. & Maeda, T. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol. Cell Biol. 32, 2861–2870. https://doi.org/10.1128/MCB.06111-11 (2012).
doi: 10.1128/MCB.06111-11 pubmed: 22586268 pmcid: 3416194
Bagnat, M., Keranen, S., Shevchenko, A. & Simons, K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA 97, 3254–3259. https://doi.org/10.1073/pnas.060034697 (2000).
doi: 10.1073/pnas.060034697 pubmed: 10716729
Uemura, S. et al. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J. Lipid Res. 55, 1343–1356. https://doi.org/10.1194/jlr.M048637 (2014).
doi: 10.1194/jlr.M048637 pubmed: 24875539 pmcid: 4076083
Lindahl, L., Genheden, S., Eriksson, L. A., Olsson, L. & Bettiga, M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol. Bioeng. 113, 744–753. https://doi.org/10.1002/bit.25845 (2016).
doi: 10.1002/bit.25845 pubmed: 26416641
Tani, M. Structure-function relationship of complex sphingolipids in yeast. Trends Glycosci. Glycotechnol. 28, E109–E116. https://doi.org/10.4052/tigg.1509.1E (2016).
doi: 10.4052/tigg.1509.1E
Uemura, S., Kihara, A., Inokuchi, J. & Igarashi, Y. Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J. Biol. Chem. 278, 45049–45055. https://doi.org/10.1074/jbc.M305498200 (2003).
doi: 10.1074/jbc.M305498200 pubmed: 12954640
Beeler, T., Gable, K., Zhao, C. & Dunn, T. A novel protein, CSG2p, is required for Ca2+ regulation in Saccharomyces cerevisiae. J. Biol. Chem. 269, 7279–7284 (1994).
pubmed: 8125941
Yamagata, M., Obara, K. & Kihara, A. Unperverted synthesis of complex sphingolipids is essential for cell survival under nitrogen starvation. Genes Cells 18, 650–659. https://doi.org/10.1111/gtc.12062 (2013).
doi: 10.1111/gtc.12062 pubmed: 23692275
Knupp, J. et al. Sphingolipid accumulation causes mitochondrial dysregulation and cell death. Cell Death Differ. 24, 2044–2053. https://doi.org/10.1038/cdd.2017.128 (2017).
doi: 10.1038/cdd.2017.128 pubmed: 28800132 pmcid: 5686345
Zhao, C., Beeler, T. & Dunn, T. Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. J. Biol. Chem. 269, 21480–21488 (1994).
pubmed: 8063782
Morimoto, Y. & Tani, M. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae. Mol. Microbiol. 95, 706–722. https://doi.org/10.1111/mmi.12896 (2015).
doi: 10.1111/mmi.12896 pubmed: 25471153
Tani, M. & Kuge, O. Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids. Mol. Microbiol. 78, 395–413. https://doi.org/10.1111/j.1365-2958.2010.07340.x (2010).
doi: 10.1111/j.1365-2958.2010.07340.x pubmed: 20979339
Tani, M. & Kuge, O. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae. Mol. Microbiol. 86, 1262–1280. https://doi.org/10.1111/mmi.12057 (2012).
doi: 10.1111/mmi.12057 pubmed: 23062277
Roelants, F. M., Baltz, A. G., Trott, A. E., Fereres, S. & Thorner, J. A protein kinase network regulates the function of aminophospholipid flippases. Proc. Natl. Acad. Sci. USA 107, 34–39. https://doi.org/10.1073/pnas.0912497106 (2010).
doi: 10.1073/pnas.0912497106 pubmed: 19966303
Lindberg, L., Santos, A. X., Riezman, H., Olsson, L. & Bettiga, M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS ONE 8, e73936. https://doi.org/10.1371/journal.pone.0073936 (2013).
doi: 10.1371/journal.pone.0073936 pubmed: 24023914 pmcid: 3762712
Guerreiro, J. F., Muir, A., Ramachandran, S., Thorner, J. & Sa-Correia, I. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem. J. 473, 4311–4325. https://doi.org/10.1042/BCJ20160565 (2016).
doi: 10.1042/BCJ20160565 pubmed: 27671892 pmcid: 5124397
Tani, M. & Toume, M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology 161, 2369–2383. https://doi.org/10.1099/mic.0.000187 (2015).
doi: 10.1099/mic.0.000187 pubmed: 26404656
Oh, C. S., Toke, D. A., Mandala, S. & Martin, C. E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272, 17376–17384. https://doi.org/10.1074/jbc.272.28.17376 (1997).
doi: 10.1074/jbc.272.28.17376 pubmed: 9211877
Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R. & Church, G. M. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. 1, 1. https://doi.org/10.1038/msb4100004 (2005).
doi: 10.1038/msb4100004
Kawahata, M., Masaki, K., Fujii, T. & Iefuji, H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6, 924–936. https://doi.org/10.1111/j.1567-1364.2006.00089.x (2006).
doi: 10.1111/j.1567-1364.2006.00089.x pubmed: 16911514
Valli, M. et al. Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl. Environ. Microbiol. 71, 1515–1521. https://doi.org/10.1128/AEM.71.3.1515-1521.2005 (2005).
doi: 10.1128/AEM.71.3.1515-1521.2005 pubmed: 15746355 pmcid: 1065191
Piper, P., Calderon, C. O., Hatzixanthis, K. & Mollapour, M. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147, 2635–2642. https://doi.org/10.1099/00221287-147-10-2635 (2001).
doi: 10.1099/00221287-147-10-2635 pubmed: 11577142
Pampulha, M. E. & Loureirodias, M. C. Combined effect of acetic-acid, Ph and ethanol on intracellular Ph of fermenting yeast. Appl. Microbiol. Biot. 31, 547–550. https://doi.org/10.1007/Bf00270792 (1989).
doi: 10.1007/Bf00270792
Lee, Y. et al. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 101, 229–239. https://doi.org/10.1007/s00253-016-7898-5 (2017).
doi: 10.1007/s00253-016-7898-5 pubmed: 27730338
Dodd, B. J. T. & Kralj, J. M. Live cell imaging reveals pH oscillations in Saccharomyces cerevisiae during metabolic transitions. Sci. Rep. 7, 13922. https://doi.org/10.1038/s41598-017-14382-0 (2017).
doi: 10.1038/s41598-017-14382-0 pubmed: 29066766 pmcid: 5654966
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195. https://doi.org/10.1038/28190 (1998).
doi: 10.1038/28190 pubmed: 9671304
Mioka, T. et al. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane. Mol. Biol. Cell 29, 1203–1218. https://doi.org/10.1091/mbc.E17-04-0217 (2018).
doi: 10.1091/mbc.E17-04-0217 pubmed: 29540528 pmcid: 5935070
Emter, R., Heese-Peck, A. & Kralli, A. ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett. 521, 57–61. https://doi.org/10.1016/s0014-5793(02)02818-1 (2002).
doi: 10.1016/s0014-5793(02)02818-1 pubmed: 12067726
Burns, N. et al. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105 (1994).
doi: 10.1101/gad.8.9.1087
Tani, M. & Kuge, O. Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 417, 673–678. https://doi.org/10.1016/j.bbrc.2011.11.138 (2012).
doi: 10.1016/j.bbrc.2011.11.138 pubmed: 22166213
Vallee, B. & Riezman, H. Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J. 24, 730–741. https://doi.org/10.1038/sj.emboj.7600562 (2005).
doi: 10.1038/sj.emboj.7600562 pubmed: 15692566 pmcid: 549621
Tani, M. & Kuge, O. Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. J. Biochem. 148, 565–571. https://doi.org/10.1093/jb/mvq090 (2010).
doi: 10.1093/jb/mvq090 pubmed: 20709688
Belli, G., Gari, E., Aldea, M. & Herrero, E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127–1138. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1127::AID-YEA300>3.0.CO;2-# (1998).
doi: 10.1002/(SICI)1097-0061(19980915)14:12<1127::AID-YEA300>3.0.CO;2-# pubmed: 9778798
Toume, M. & Tani, M. Yeast lacking the amphiphysin-family protein Rvs167 are sensitive to disruptions in sphingolipid levels. FEBS J. 283, 2911–2928. https://doi.org/10.1111/febs.13783 (2016).
doi: 10.1111/febs.13783 pubmed: 27312128
Toume, M. & Tani, M. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 358, 64–71. https://doi.org/10.1111/1574-6968.12535 (2014).
doi: 10.1111/1574-6968.12535 pubmed: 25040056
Buede, R., Rinker-Schaffer, C., Pinto, W. J., Lester, R. L. & Dickson, R. C. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J. Bacteriol. 173, 4325–4332 (1991).
doi: 10.1128/JB.173.14.4325-4332.1991
Nagiec, M. M. et al. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272, 9809–9817. https://doi.org/10.1074/jbc.272.15.9809 (1997).
doi: 10.1074/jbc.272.15.9809 pubmed: 9092515
Sato, K., Noda, Y. & Yoda, K. Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization. Mol. Biol. Cell 20, 4444–4457. https://doi.org/10.1091/mbc.E09-03-0235 (2009).
doi: 10.1091/mbc.E09-03-0235 pubmed: 19726565 pmcid: 2762142
Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053. https://doi.org/10.1038/nature08787 (2010).
doi: 10.1038/nature08787 pubmed: 20182505 pmcid: 2877384
Guillas, I. et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J. 20, 2655–2665. https://doi.org/10.1093/emboj/20.11.2655 (2001).
doi: 10.1093/emboj/20.11.2655 pubmed: 11387200 pmcid: 125493
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962. https://doi.org/10.1002/yea.1142 (2004).
doi: 10.1002/yea.1142 pubmed: 15334558
Gatta, A. T. et al. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. Elife https://doi.org/10.7554/eLife.07253 (2015).
doi: 10.7554/eLife.07253 pubmed: 26001273 pmcid: 4463742
Anderson, T. M. et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10, 400–406. https://doi.org/10.1038/nchembio.1496 (2014).
doi: 10.1038/nchembio.1496 pubmed: 24681535 pmcid: 3992202
Murley, A. et al. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209, 539–548. https://doi.org/10.1083/jcb.201502033 (2015).
doi: 10.1083/jcb.201502033 pubmed: 25987606 pmcid: 4442815
Elbaz-Alon, Y. et al. Lam6 regulates the extent of contacts between organelles. Cell Rep. 12, 7–14. https://doi.org/10.1016/j.celrep.2015.06.022 (2015).
doi: 10.1016/j.celrep.2015.06.022 pubmed: 26119743 pmcid: 4518459
Tanaka, S. & Tani, M. Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae. FEBS J. 285, 2405–2427. https://doi.org/10.1111/febs.14509 (2018).
doi: 10.1111/febs.14509 pubmed: 29775232
Kodedova, M. & Sychrova, H. Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS ONE 10, e0139306. https://doi.org/10.1371/journal.pone.0139306 (2015).
doi: 10.1371/journal.pone.0139306 pubmed: 26418026 pmcid: 4587746
Gururaj, C., Federman, R. S. & Chang, A. Orm proteins integrate multiple signals to maintain sphingolipid homeostasis. J. Biol. Chem. 288, 20453–20463. https://doi.org/10.1074/jbc.M113.472860 (2013).
doi: 10.1074/jbc.M113.472860 pubmed: 23737533 pmcid: 3711311
Schmidt, O. et al. Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J. 38, e101433. https://doi.org/10.15252/embj.2018101433 (2019).
doi: 10.15252/embj.2018101433 pubmed: 31368600 pmcid: 6669922
Park, S. Y., Seo, S. B., Lee, S. J., Na, J. G. & Kim, Y. J. Mutation in PMR1, a Ca(2+)-ATPase in Golgi, confers salt tolerance in Saccharomyces cerevisiae by inducing expression of PMR2, an Na(+)-ATPase in plasma membrane. J. Biol. Chem. 276, 28694–28699. https://doi.org/10.1074/jbc.M101185200 (2001).
doi: 10.1074/jbc.M101185200 pubmed: 11387321
da Silveira Dos Santos, A. X. et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25, 3234–3246. https://doi.org/10.1091/mbc.E14-03-0851 (2014).
doi: 10.1091/mbc.E14-03-0851 pubmed: 25143408 pmcid: 4196872
Tani, M. & Funato, K. Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast. Curr. Genet. 64, 1021–1028. https://doi.org/10.1007/s00294-018-0826-8 (2018).
doi: 10.1007/s00294-018-0826-8 pubmed: 29556757
Arita, N., Sakamoto, R. & Tani, M. Mitochondrial reactive oxygen species-mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeast Saccharomyces cerevisiae. FEBS J. https://doi.org/10.1111/febs.15211 (2020).
doi: 10.1111/febs.15211 pubmed: 31944552
Han, S., Lone, M. A., Schneiter, R. & Chang, A. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851–5856. https://doi.org/10.1073/pnas.0911617107 (2010).
doi: 10.1073/pnas.0911617107 pubmed: 20212121
Roelants, F. M., Breslow, D. K., Muir, A., Weissman, J. S. & Thorner, J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 108, 19222–19227. https://doi.org/10.1073/pnas.1116948108 (2011).
doi: 10.1073/pnas.1116948108 pubmed: 22080611
Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670. https://doi.org/10.1002/yea.1130 (2004).
doi: 10.1002/yea.1130 pubmed: 15197731
Eisenkolb, M., Zenzmaier, C., Leitner, E. & Schneiter, R. A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol. Biol. Cell 13, 4414–4428. https://doi.org/10.1091/mbc.E02-02-0116 (2002).
doi: 10.1091/mbc.E02-02-0116 pubmed: 12475962 pmcid: 138643
te Welscher, Y. M. et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 283, 6393–6401. https://doi.org/10.1074/jbc.M707821200 (2008).
doi: 10.1074/jbc.M707821200
Valdez-Taubas, J. & Pelham, H. R. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636–1640. https://doi.org/10.1016/j.cub.2003.09.001 (2003).
doi: 10.1016/j.cub.2003.09.001 pubmed: 13678596
Hechtberger, P. et al. Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 225, 641–649 (1994).
doi: 10.1111/j.1432-1033.1994.00641.x
Nakahara, K. et al. The Sjogren–Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 46, 461–471. https://doi.org/10.1016/j.molcel.2012.04.033 (2012).
doi: 10.1016/j.molcel.2012.04.033 pubmed: 22633490
Blasco-Moreno, B. et al. The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nat. Commun. 10, 1298. https://doi.org/10.1038/s41467-019-09199-6 (2019).
doi: 10.1038/s41467-019-09199-6 pubmed: 30899024 pmcid: 6428865
Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).
doi: 10.1002/yea.320101310
Tong, A. H. & Boone, C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313, 171–192. https://doi.org/10.1385/1-59259-958-3:171 (2006).
doi: 10.1385/1-59259-958-3:171 pubmed: 16118434
Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).
pubmed: 2659436 pmcid: 1203683
Tani, M. & Kuge, O. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae. Yeast 31, 145–158. https://doi.org/10.1002/yea.3004 (2014).
doi: 10.1002/yea.3004 pubmed: 24578286
Sano, T., Kihara, A., Kurotsu, F., Iwaki, S. & Igarashi, Y. Regulation of the sphingoid long-chain base kinase Lcb4p by ergosterol and heme: studies in phytosphingosine-resistant mutants. J. Biol. Chem. 280, 36674–36682. https://doi.org/10.1074/jbc.M503147200 (2005).
doi: 10.1074/jbc.M503147200 pubmed: 16141212
Yamaguchi, Y. et al. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol. Microbiol. 107, 363–386. https://doi.org/10.1111/mmi.13886 (2018).
doi: 10.1111/mmi.13886 pubmed: 29215176
Hanson, B. A. & Lester, R. L. The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J. Lipid Res. 21, 309–315 (1980).
pubmed: 6445928
Vaden, D. L., Gohil, V. M., Gu, Z. & Greenberg, M. L. Separation of yeast phospholipids using one-dimensional thin-layer chromatography. Anal. Biochem. 338, 162–164. https://doi.org/10.1016/j.ab.2004.11.020 (2005).
doi: 10.1016/j.ab.2004.11.020 pubmed: 15707948
Tani, M., Kihara, A. & Igarashi, Y. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochem. J. 394, 237–242. https://doi.org/10.1042/BJ20051354 (2006).
doi: 10.1042/BJ20051354 pubmed: 16225461 pmcid: 1386021
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
doi: 10.1038/227680a0
Uemura, S., Kihara, A., Iwaki, S., Inokuchi, J. & Igarashi, Y. Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by the Ca2+-binding protein Csg2. J. Biol. Chem. 282, 8613–8621. https://doi.org/10.1074/jbc.M606649200 (2007).
doi: 10.1074/jbc.M606649200 pubmed: 17220303

Auteurs

Mikiko Otsu (M)

Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Moeko Toume (M)

Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Yutaro Yamaguchi (Y)

Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Motohiro Tani (M)

Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. tani@chem.kyushu-univ.jp.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH