Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways.
AC133 Antigen
/ metabolism
Antineoplastic Agents
/ pharmacology
Cell Line, Tumor
Drug Resistance, Neoplasm
Dual Specificity Phosphatase 1
/ metabolism
Humans
Melanoma
/ drug therapy
Nitrosourea Compounds
/ pharmacology
Organophosphorus Compounds
/ pharmacology
Phosphatidylinositol 3-Kinases
/ metabolism
Proto-Oncogene Proteins c-mdm2
/ metabolism
Signal Transduction
Stem Cells
/ drug effects
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
26
07
2019
accepted:
16
06
2020
revised:
28
05
2020
pubmed:
4
7
2020
medline:
1
12
2020
entrez:
4
7
2020
Statut:
ppublish
Résumé
Melanoma stem cells (MSCs) are characterized by their unique cell surface proteins and aberrant signaling pathways. These stemness properties are either in a causal or consequential relationship to melanoma progression, treatment resistance and recurrence. The functional analysis of CD133
Identifiants
pubmed: 32616888
doi: 10.1038/s41388-020-1373-6
pii: 10.1038/s41388-020-1373-6
doi:
Substances chimiques
AC133 Antigen
0
Antineoplastic Agents
0
Nitrosourea Compounds
0
Organophosphorus Compounds
0
PROM1 protein, human
0
MDM2 protein, human
EC 2.3.2.27
Proto-Oncogene Proteins c-mdm2
EC 2.3.2.27
DUSP1 protein, human
EC 3.1.3.48
Dual Specificity Phosphatase 1
EC 3.1.3.48
fotemustine
GQ7JL9P5I2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5468-5478Références
Roesch A, Paschen A, Landsberg J, Helfrich I, Becker JC, Schadendorf D. Phenotypic tumour cell plasticity as a resistance mechanism and therapeutic target in melanoma. Eur J Cancer. 2016;59:109–12.
pubmed: 27023049
Li Z, Jia H, Zhang B, Zhang Y, Li H, Song P. The clinical features, treatment, and prognosis of primary mediastinal malignant melanoma: a case report. Med (Baltim). 2017;96:e6436.
El-Khattouti A, Sheehan NT, Monico J, Drummond HA, Haikel Y, Brodell RT, et al. CD133
pubmed: 25449786
Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, et al. Notch1-MAPK signaling axis regulates CD133(+) cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 2016;136:2462–74.
pubmed: 27476721
Sun H, Hu K, Wu M, Xiong J, Yuan L, Tang Y, et al. Contact by melanoma cells causes malignant transformation of human epithelial-like stem cells via alpha V integrin activation of transforming growth factor β1 signaling. Exp Biol Med (Maywood). 2011;236:352–65.
Beasley GM, Speicher P, Augustine CK, Dolber PC, Peterson BL, Sharma K, et al. A multicenter phase I dose escalation trial to evaluate safety and tolerability of intra-arterial temozolomide for patients with advanced extremity melanoma using normothermic isolated limb infusion. Ann Surg Oncol. 2015;22:287–94.
pubmed: 25145500
Yang H, Kircher DA, Kim KH, Grossmann AH, VanBrocklin MW, Holmen SL, et al. Activated MEK cooperates with Cdkn2a and Pten loss to promote the development and maintenance of melanoma. Oncogene. 2017;36:3842–51.
pubmed: 28263969
pmcid: 5501768
Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–72.
pubmed: 21107320
pmcid: 3058384
Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 2017;30:1666–76.
pubmed: 28776578
van den Hurk K, Niessen HE, Veeck J, van den Oord JJ, van Steensel MA, Zur Hausen A, et al. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta. 2012;1826:89–102.
pubmed: 22503822
Pulluri B, Kumar A, Shaheen M, Jeter J, Sundararajan S. Tumor microenvironment changes leading to resistance of immune checkpoint inhibitors in metastatic melanoma and strategies to overcome resistance. Pharm Res. 2017;123:95–102.
Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ, et al. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem. 2012;287:28087–98.
pubmed: 22730329
pmcid: 3431627
Gowrishankar K, Snoyman S, Pupo GM, Becker TM, Kefford RF, Rizos H. Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. J Invest Dermatol. 2012;132:1850–9.
pubmed: 22437314
Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer. 2015;51:2792–9.
pubmed: 26608120
pmcid: 26608120
Easty DJ, Gray SG, O’Byrne KJ, O’Donnell D, Bennett DC. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res. 2011;24:446–61.
pubmed: 21320293
Marchetti D, Parikh N, Sudol M, Gallick GE. Stimulation of the protein tyrosine kinase c-Yes but not c-Src by neurotrophins in human brain-metastatic melanoma cells. Oncogene. 1998;16:3253–60.
pubmed: 9681823
Loganzo F, Dosik JS, Zhao Y, Vidal MJ, Nanus DM, Sudol M, et al. Elevated expression of protein tyrosine kinase c-Yes, but not c-Src, in human malignant melanoma. Oncogene. 1993;8:2637–44.
pubmed: 7690926
Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997;278:2075–80.
pubmed: 9405336
Wang Z, Chen X, Zhong MZ, Yang S, Zhou J, Klinkebiel DL, et al. Cyclin-dependent kinase 1-mediated phosphorylation of YES links mitotic arrest and apoptosis during antitubulin chemotherapy. Cell Signal. 2018;52:137–46.
pubmed: 30223016
pmcid: 6170005
Verstraete K, Savvides SN. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer. 2012;12:753–66.
pubmed: 23076159
González Del Alba A, Arranz JÁ, Puente J, Méndez-Vidal MJ, Gallardo E, et al. Recent advances in genitourinary tumors: a review focused on biology and systemic treatment. Crit Rev Oncol Hematol. 2017;113:171–90.
pubmed: 28427506
Aveic S, Tonini GP. Resistance to receptor tyrosine kinase inhibitors in solid tumors: can we improve the cancer fighting strategy by blocking autophagy? Cancer Cell Int. 2016;16:62.
pubmed: 27486382
pmcid: 4970224
Ko HM, Lee SH, Bang M, Kim KC, Jeon SJ, Park YM, et al. Tyrosine kinase Fyn regulates iNOS expression in LPS-stimulated astrocytes via modulation of ERK phosphorylation. Biochem Biophys Res Commun. 2018;495:1214–20.
pubmed: 29180007
Yoshimoto N, Kuroda S. High-throughput analysis of mammalian receptor tyrosine kinase activation in yeast cells. Methods Mol Biol. 2017;1487:35–52.
pubmed: 27924557
Hays JL, Watowich SJ. Oligomerization-induced modulation of TPR-MET tyrosine kinase activity. J Biol Chem. 2003;278:27456–63.
pubmed: 12711601
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA. 2013;110:6829–34.
pubmed: 23569237
Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R. Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood. 2007;110:1612–20.
pubmed: 17483298
pmcid: 1975845
Lee J, Park M, Ko Y, Kim B, Kim O, Hyun H, et al. Ectopic overexpression of CD133 in HNSCC makes it resistant to commonly used chemotherapeutics. Tumour Biol. 2017;39:1010428317695534.
pubmed: 28381190
Ma L, Liu T, Jin Y, Wei J, Yang Y, Zhang H. ABCG2 is required for self-renewal and chemoresistance of CD133-positive human colorectal cancer cells. Tumour Biol. 2016;37:12889–96.
pubmed: 27449042
Jang JW, Song Y, Kim SH, Kim J, Seo HR. Potential mechanisms of CD133 in cancer stem cells. Life Sci. 2017;184:25–29.
pubmed: 28697984
Manzano JL, Bugés C, de Los Llanos Gil M, Vila L, Martínez-Balibrea E, Martínez-Cardús A. Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med. 2016;4:237.
pubmed: 27429963
pmcid: 4930524
Prahallad A, Heynen GJ, Germano G, Willems SM, Evers B, Vecchione L, et al. PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 2015;12:1978–85.
pubmed: 26365186
Bagrodia S, Smeal T, Abraham RT. Mechanisms of intrinsic and acquired resistance to kinase-targeted therapies. Pigment Cell Melanoma Res. 2012;25:819–31.
pubmed: 22883054
Jazirehi AR, Nazarian R, Torres-Collado AX, Economou JS. Aberrant apoptotic machinery confers melanoma dual resistance to BRAF(V600E) inhibitor and immune effector cells: immunosensitization by a histone deacetylase inhibitor. Am J Clin Exp Immunol. 2014;3:43–56.
pubmed: 24660121
pmcid: 3960761
Meng Y, Hertel N, Ellis J, Morais E, Johnson H, Philips Z, et al. The cost-effectiveness of nivolumab monotherapy for the treatment of advanced melanoma patients in England. Eur J Health Econ. 2018;19:1163–72.
pubmed: 29524005
Schadendorf D, Amonkar MM, Stroyakovskiy D, Levchenko E, Gogas H, de Braud F, et al. Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur J Cancer. 2015;51:833–40.
pubmed: 25794603
Fujii Y, Nishikawa Y, Nomura M, Miyamoto S, Uneno Y, Horimatsu T, et al. Readministration of Nivolumab after persistent immune-related colitis in a patient with recurrent melanoma. Intern Med. 2018;57:1173–6.
pubmed: 29269640
Maio M, Lewis K, Demidov L, Mandalà M, Bondarenko I, Ascierto PA, et al. Adjuvant vemurafenib in resected, BRAF. Lancet Oncol. 2018;19:510–20.
pubmed: 29477665
Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, et al. Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget. 2018;9:915–23.
pubmed: 29416666
Ganesh S, Shui X, Craig KP, Koser ML, Chopda GR, Cyr WA, et al. β-Catenin mRNA silencing and MEK inhibition display synergistic efficacy in preclinical tumor models. Mol Cancer Ther. 2018;17:544–53.
pubmed: 29282298
Desvignes C, Abi Rached H, Templier C, Drumez E, Lepesant P, Desmedt E, et al. BRAF inhibitor discontinuation and rechallenge in advanced melanoma patients with a complete initial treatment response. Melanoma Res. 2017;27:281–7.
pubmed: 28240681
Bright R, Coventry BJ, Eardley-Harris N, Briggs N. Clinical response rates from Interleukin-2 therapy for metastatic melanoma over 30 years’ experience: a meta-analysis of 3312 patients. J Immunother. 2017;40:21–30.
pubmed: 27875387
Kaufmann R, Spieth K, Leiter U, Mauch C, von den Driesch P, Vogt T, et al. Temozolomide in combination with interferon-alfa versus temozolomide alone in patients with advanced metastatic melanoma: a randomized, phase III, multicenter study from the Dermatologic Cooperative Oncology Group. J Clin Oncol. 2005;23:9001–7.
pubmed: 16260697
El-Khattouti A, Selimovic D, Haïkel Y, Megahed M, Gomez CR, Hassan M. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: an insight into the mechanisms of their resistance and response. Cancer Lett. 2014;343:123–33.
pubmed: 24080340
Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day WA, Espinoza I, et al. Elevated expression of hepatoma up-regulated protein inhibits γ-irradiation-induced apoptosis of prostate cancer cells. J Cell Biochem. 2016;117:1308–18.
pubmed: 26505164
Liu M, Hales BF, Robaire B. Effects of four chemotherapeutic agents, bleomycin, etoposide, cisplatin, and cyclophosphamide, on DNA damage and telomeres in a mouse spermatogonial cell line. Biol Reprod. 2014;90:72.
pubmed: 24571982
El-Khattouti A, Selimovic D, Hannig M, Taylor EB, Abd Elmageed ZY, Hassan SY, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266–86.
pubmed: 26578344
El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 2013;6:37–55.
pubmed: 25278778
pmcid: 4147769
Ko A, Han SY, Song J. Regulatory Network of ARF in Cancer Development. Mol Cells. 2018;41:381–9.
pubmed: 29665672
pmcid: 5974615
Nikolic N, Anicic B, Carkic J, Simonovic J, Toljic B, Tanic N, et al. High frequency of p16 and p14 promoter hypermethylation and marked telomere instability in salivary gland tumors. Arch Oral Biol. 2015;60:1662–6.
pubmed: 26351750
Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6:663–73.
pubmed: 16915296
Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res. 2000;60:417–24.
pubmed: 10667596
Zhao Y, Yao YH, Li L, An WF, Chen HZ, Sun LP, et al. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway. Med Oncol. 2014;31:288.
pubmed: 25367850
Yao D, Wang Y, Xue L, Wang H, Zhang J, Zhang X. Different expression pattern and significance of p14ARF-Mdm2-p53 pathway and Bmi-1 exist between gastric cardia and distal gastric adenocarcinoma. Hum Pathol. 2013;44:844–51.
pubmed: 23159155
Wang H, Xu G, Huang Z, Li W, Cai H, Zhang Y, et al. Correction: NLRP6 targeting suppresses gastric tumorigenesis via P14. Oncotarget. 2018;9:35512.
pubmed: 30464807
pmcid: 6231455
Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med. 2012;18:1239–47.
pubmed: 22820643
Michaelis M, Rothweiler F, Barth S, Cinatl J, van Rikxoort M, Löschmann N, et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2011;2:e243.
pubmed: 22170099
pmcid: 3252738
de Polo A, Luo Z, Gerarduzzi C, Chen X, Little JB, Yuan ZM. AXL receptor signalling suppresses p53 in melanoma through stabilization of the MDMX-MDM2 complex. J Mol Cell Biol. 2017;9:154–65.
pubmed: 27927748
Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:12–36.
pubmed: 19145068
pmcid: 3524306
Assouline SE, Chang J, Cheson BD, Rifkin R, Hamburg S, Reyes R, et al. Phase 1 dose-escalation study of IV ixazomib, an investigational proteasome inhibitor, in patients with relapsed/refractory lymphoma. Blood Cancer J. 2014;4:e251.
pubmed: 25325301
pmcid: 4220649
El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11.
pubmed: 27486476
pmcid: 4969639
Selimovic D, Porzig BB, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, et al. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308–18.
pubmed: 23079083
Hassan M, Alaoui A, Feyen O, Mirmohammadsadegh A, Essmann F, Tannapfel A, et al. The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene. 2008;27:4557–68.
pubmed: 18408751
Lee WR, Shen SC, Wu PR, Chou CL, Shih YH, Yeh CM, et al. CSE1L Links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol Carcinog. 2016;55:1542–52.
pubmed: 26331446
Oo AKK, Calle AS, Nair N, Mahmud H, Vaidyanath A, Yamauchi J, et al. Up-regulation of PI 3-kinases and the activation of PI3K-Akt signaling pathway in cancer stem-like cells through dna hypomethylation mediated by the cancer microenvironment. Transl Oncol. 2018;11:653–63.
pubmed: 29621663
pmcid: 6054593
Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci. 2013;104:810–6.
pubmed: 23510069
pmcid: 7657236
Segrelles C, García-Escudero R, Garín MI, Aranda JF, Hernández P, Ariza JM, et al. Akt signaling leads to stem cell activation and promotes tumor development in epidermis. Stem Cells. 2014;32:1917–28.
pubmed: 24504902
Nadel G, Yao Z, Ben-Ami I, Naor Z, Seger R. Gq-induced apoptosis is mediated by AKT inhibition that leads to PKC-induced JNK activation. Cell Physiol Biochem. 2018;50:121–35.
pubmed: 30278445
Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, et al. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep. 2018;39:1523–31.
pubmed: 29328421
Fenouille N, Puissant A, Tichet M, Zimniak G, Abbe P, Mallavialle A, et al. SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene. 2011;30:4887–900.
pubmed: 21685937
Dong C, Zhao B, Long F, Liu Y, Liu Z, Li S, et al. Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein. Oncotarget. 2016;7:8850–65.
pubmed: 26840457
pmcid: 4891009
Li H, Wang Z, Jiang M, Fang RP, Shi H, Shen Y, et al. The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharm Sin. 2018;39:1787–96.
Wang Y, Hu L, Wang J, Li X, Sahengbieke S, Wu J, et al. HMGA2 promotes intestinal tumorigenesis by facilitating MDM2-mediated ubiquitination and degradation of p53. J Pathol. 2018;246:508–18.
pubmed: 30175854
Selimovic D, Sprenger A, Hannig M, Haïkel Y, Hassan M. Apoptosis related protein-1 triggers melanoma cell death via interaction with the juxtamembrane region of p75 neurotrophin receptor. J Cell Mol Med. 2012;16:349–61.
pubmed: 21418516
pmcid: 3823298