The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans.
Acetanilides
/ pharmacology
Adipocytes, Beige
/ cytology
Adipocytes, Brown
/ cytology
Adipocytes, White
/ drug effects
Adipose Tissue, Brown
/ cytology
Adipose Tissue, White
/ drug effects
Animals
Cell Lineage
/ drug effects
Cell Transdifferentiation
/ drug effects
Diabetes Mellitus
/ drug therapy
Drugs, Investigational
/ pharmacology
Energy Metabolism
/ genetics
Humans
Imatinib Mesylate
/ pharmacology
Obesity
/ drug therapy
Roscovitine
/ pharmacology
Thermogenesis
/ genetics
Thiazoles
/ pharmacology
adipocytes
beige
brite
brown
diabetes
obesity
plasticity
thermogenesis
transdifferentiation
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
17
06
2020
received:
02
04
2020
accepted:
29
06
2020
pubmed:
6
7
2020
medline:
23
7
2021
entrez:
5
7
2020
Statut:
ppublish
Résumé
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Substances chimiques
Acetanilides
0
Drugs, Investigational
0
Thiazoles
0
Roscovitine
0ES1C2KQ94
Imatinib Mesylate
8A1O1M485B
mirabegron
MVR3JL3B2V
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3628-3646Informations de copyright
© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Fromme T, Kleigrewe K, Dunkel A, Retzler A, Li Y, Maurer S, Fischer N, Diezko R, Kanzleiter T, Hirschberg V et al. (2018) Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity. Mol Metab 8, 77-85.
Klingenspor M, Bast A, Bolze F, Li Y, Maurer S, Schweizer S, Willershauser M, Fromme T (2017) Brown adipose tissue. In Adipose Tissue Biology (Symonds ME eds), pp. 91-147. Springer International Publishing.
Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E & Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90-94.
Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B & Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15, 2048-2050.
Roh HC, Tsai LTY, Shao M, Tenen D, Shen Y, Kumari M, Lyubetskaya A, Jacobs C, Dawes B, Gupta RK et al. (2018) Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab 27, 1121-1137 e5.
Perdikari A, Leparc GG, Balaz M, Pires ND, Lidell ME, Sun W, Fernandez-Albert F, Müller S, Akchiche N, Dong H et al. (2018) BATLAS: deconvoluting brown adipose tissue. Cell Rep 25, 784-797 e4.
Li Y, Fromme T, Schweizer S, Schöttl T & Klingenspor M (2014) Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes. EMBO Rep 15, 1069-1076.
Shabalina IG, Petrovic N, de Jong JMA, Kalinovich AV, Cannon B & Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5, 1196-1203.
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E & Tseng Y-H (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379-383.
Hoffmann JM, Grünberg JR, Church C, Elias I, Palsdottir V, Jansson J-O, Bosch F, Hammarstedt A, Hedjazifar S & Smith U (2017) BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue. Cell Rep 20, 1038-1049.
Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25, 823-835.
Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM et al. (2004) Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci USA 101, 16801-16806.
De Matteis R, Zingaretti MC, Murano I, Vitali A, Frontini A, Giannulis I, Barbatelli G, Marcucci F, Bordicchia M, Sarzani R et al. (2009) In vivo physiological transdifferentiation of adult adipose cells. Stem Cells 27, 2761-2768.
Li L, Li B, Li M, Niu C, Wang G, Li T, Król E, Jin W & Speakman JR (2017) Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Mol Metab 6, 1198-1211.
Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM et al. (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA 114, 8649-8654.
Gerngross C et al. (2017) Active brown fat during (18)F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J Nucl Med 58, 1104-1110.
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T et al. (2008) Dynamics of fat cell turnover in humans. Nature 453, 783-787.
Salans LB, Horton ES & Sims EA (1971) Experimental obesity in man: cellular character of the adipose tissue. J Clin Invest 50, 1005-1011.
Harms MJ, Li Q, Lee S, Zhang C, Kull B, Hallen S, Thorell A, Alexandersson I, Hagberg CE, Peng X-R et al. (2019) Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Rep 27, 213-225, e5.
Berry DC, Jiang Y & Graff JM (2016) Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7, 10184.
Rosenwald M et al. (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15, 659-667.
Wang QA, Tao C, Gupta RK & Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19, 1338-1344.
Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al. (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376.
Cattaneo P et al. (2020) Parallel lineage-tracing studies establish fibroblasts as the prevailing in vivo adipocyte progenitor. Cell Rep 30, 571-582, e2.
Lasar D, Julius A, Fromme T & Klingenspor M (2013) Browning attenuates murine white adipose tissue expansion during postnatal development. Biochim Biophys Acta 1831, 960-968.
Wu Y, Kinnebrew MA, Kutyavin VI & Chawla A (2020) Distinct signaling and transcriptional pathways regulate peri-weaning development and cold-induced recruitment of beige adipocytes. Proc Natl Acad Sci USA 117, 6883-6889.
Xue B, Rim J-S, Hogan JC, Coulter AA, Koza RA & Kozak LP (2007) Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 48, 41-51.
Birnbacher L, Maurer S, Scheidt K, Herzen J, Pfeiffer F & Fromme T (2018) Electron density of adipose tissues determined by phase-contrast computed tomography provides a measure for mitochondrial density and fat content. Front Physiol 9, 707.
Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM & Kozak LP (2015) Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 29, 3238-3252.
Wu R, Yu W, Fu L, Li F, Jing J, Cui X, Wang S, Cao Q, Xue B & Shi H (2020) The postnatal leptin surge is critical for the transient induction of the developmental beige adipocytes in mice. Am J Physiol Endocrinol Metab 318, E453-E461.
Shao M, Wang QA, Song A, Vishvanath L, Busbuso NC, Scherer PE & Gupta RK (2019) Cellular origins of beige fat cells revisited. Diabetes 68, 1874-1885.
Lee YH, Petkova AP, Konkar AA & Granneman JG (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29, 286-299.
Wang Y, Paulo E, Wu D, Wu Y, Huang W, Chawla A & Wang B (2017) Adipocyte liver kinase b1 suppresses beige adipocyte renaissance through class IIa histone deacetylase 4. Diabetes 66, 2952-2963.
Yu H, Dilbaz S, Coßmann J, Hoang AC, Diedrich V, Herwig A, Harauma A, Hoshi Y, Moriguchi T, Landgraf K et al. (2019) Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest 129, 2485-2499.
Jiang Y, Berry DC & Graff JM (2017) Distinct cellular and molecular mechanisms for beta3 adrenergic receptor-induced beige adipocyte formation. Elife 6, e30329.
Contreras GA, Lee Y-H, Mottillo EP & Granneman JG (2014) Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 307, E793-E799.
Lee YH et al. (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15, 480-491.
Gao Z et al. (2018) PDGFRalpha/PDGFRbeta signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145, dev155861. http://dx.doi.org/10.1242/dev.155861
de Jong JMA, Sun W, Pires ND, Frontini A, Balaz M, Jespersen NZ, Feizi A, Petrovic K, Fischer AW, Bokhari MH et al. (2019) Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab 1, 830-843.
Gao P, Jiang Y, Wu H, Sun F, Li Y, He H, Wang B, Lu Z, Hu Y, Wei X et al. (2020) Inhibition of mitochondrial calcium overload by SIRT3 prevents obesity- or age-related whitening of brown adipose tissue. Diabetes 69, 165-180.
Goncalves LF, Machado TQ, Castro-Pinheiro C, de Souza NG, Oliveira KJ & Fernandes-Santos C (2017) Ageing is associated with brown adipose tissue remodelling and loss of white fat browning in female C57BL/6 mice. Int J Exp Pathol 98, 100-108.
Terada E et al. (2019) Brown adipose activation and reversible beige coloration in adipose tissue with multiple accumulations of (18)F-fluorodeoxyglucose in sporadic paraganglioma: a case report. Clin Case Rep 7, 1399-1403.
Vergnes L, Davies GR, Lin JY, Yeh MW, Livhits MJ, Harari A, Symonds ME, Sacks HS & Reue K (2016) Adipocyte browning and higher mitochondrial function in periadrenal but not SC fat in pheochromocytoma. J Clin Endocrinol Metab 101, 4440-4448.
Sondergaard E, Gormsen LC, Christensen MH, Pedersen SB, Christiansen P, Nielsen S, Poulsen Pl & Jessen N (2015) Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet Med 32, e4-e8.
Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC et al. (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22, 219-27.
Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G et al. (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20, 433-447.
Frontini A, Vitali A, Perugini J, Murano I, Romiti C, Ricquier D, Guerrieri M & Cinti S (2013) White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta 1831, 950-959.
Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee RE, Westgate PM & Dupont-Versteegden EE (2014) The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metab 99, E2772-E2779.
Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B, Vekaria HJ, Harfmann B, Jones KA, Johnson ZR, Westgate PM et al. (2018) Human adipose beiging in response to cold and mirabegron. JCI Insight 3, e121510.
Finlin BS, Zhu B, Confides AL, Westgate PM, Harfmann BD, Dupont-Versteegden EE & Kern PA (2017) Mast cells promote seasonal white adipose beiging in humans. Diabetes 66, 1237-1246.
Min SY, Desai A, Yang Z, Sharma A, DeSouza T, Genga RMJ, Kucukural A, Lifshitz LM, Nielsen S, Scheele C et al. (2019) Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci USA 116, 17970-17979.
Raajendiran A, Ooi G, Bayliss J, O'Brien PE, Schittenhelm RB, Clark AK, Taylor RA, Rodeheffer MS, Burton PR & Watt MJ (2019) Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep 27, 1528-1540, e7.
Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, Huang TL, Townsend KL, Li Y, Takahashi H et al. (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 21, 760-768.
Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O'Mahony G et al. (2020) PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab 36, 100964.
Alexandersson I, Harms MJ & Boucher J (2020) Isolation and culture of human mature adipocytes using membrane mature adipocyte aggregate cultures (MAAC). J Vis Exp 156. https://doi.org/10.3791/60485
Aherne W & Hull D (1964) The site of heat production in the newborn infant. Proc R Soc Med 57, 1172-1173.
Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112 (Pt 1), 35-39.
Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P et al. (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19, 631-634.
Fletcher LA, Kim K, Leitner BP, Cassimatis TM, O'Mara AE, Johnson JW, Halprin MS, McGehee SM, Brychta RJ, Cypess AM et al. (2020) Sexual dimorphisms in adult human brown adipose tissue. Obesity (Silver Spring) 28, 241-246.
Jespersen NZ, Feizi A, Andersen ES, Heywood S, Hattel HB, Daugaard S, Peijs L, Bagi P, Feldt-Rasmussen B, Schultz HS et al. (2019) Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol Metab 24, 30-43.
Svensson PA, Lindberg K, Hoffmann JM, Taube M, Pereira MJ, Mohsen-Kanson T, Hafner A-L, Rizell M, Palming J, Dani C et al. (2014) Characterization of brown adipose tissue in the human perirenal depot. Obesity (Silver Spring) 22, 1830-1837.
Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T & Saito M (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123, 3404-3408.
van der Lans AA, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM et al. (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123, 3395-3403.
Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC, Richard D et al. (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99, E438-E446.
Efremova A, Senzacqua M, Venema W, Isakov E, Di Vincenzo A, Zingaretti MC, Protasoni M, Thomski M, Giordano A & Cinti S (2019) A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J Physiol Biochem 76, 185-192.
Ogawa Y, Abe K, Sakoda A, Onizuka H & Sakai S (2018) FDG-PET and CT findings of activated brown adipose tissue in a patient with paraganglioma. Eur J Radiol Open 5, 126-130.
Inagaki T, Sakai J & Kajimura S (2016) Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 17, 480-495.
Seale P (2015) Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64, 2369-2375.
Loft A, Forss I & Mandrup S (2017) Genome-wide insights into the development and function of thermogenic adipocytes. Trends Endocrinol Metab 28, 104-120.
Harms M & Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19, 1252-1263.
Shapira SN & Seale P (2019) Transcriptional control of brown and beige fat development and function. Obesity (Silver Spring) 27, 13-21.
Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al. (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967.
Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K-J & Seale P (2014) Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci USA 111, 14466-14471.
Uldry M, Yang W, St-Pierre J, Lin J, Seale P & Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3, 333-341.
Puigserver P, Wu Z, Park CW, Graves R, Wright M & Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839.
Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D & Langin D (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278, 33370-33376.
Kajimura S et al. (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460, 1154-1158.
Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D & Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6, 38-54.
Rajakumari S, Wu J, Ishibashi J, Lim H-W, Giang A-H, Won K-J, Reed RR & Seale P (2013) EBF2 determines and maintains brown adipocyte identity. Cell Metab 17, 562-574.
Wang L et al. (2013) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32, 45-59.
Abe Y, Rozqie R, Matsumura Y, Kawamura T, Nakaki R, Tsurutani Y, Tanimura-Inagaki K, Shiono A, Magoori K, Nakamura K et al. (2015) JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat Commun 6, 7052.
Loft A et al. (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev 29, 7-22.
Lee JE, Wang C, Xu S, Cho Y-W, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W et al. (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2, e01503.
Hansen JB et al. (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci USA 101, 4112-4117.
Zhou H, Wan B, Grubisic I, Kaplan T & Tjian R (2014) TAF7L modulates brown adipose tissue formation. Elife 3, e02811.
Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR & Spiegelman BM (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619-623.
Qiang L et al. (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150, 620-632.
Wang F, Mullican SE, DiSpirito JR, Peed LC & Lazar MA (2013) Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proc Natl Acad Sci USA 110, 18656-18661.
Rosen ED et al. (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16, 22-26.
Kubota N et al. (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4, 597-609.
Barak Y et al. (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4, 585-595.
Petrovic N et al. (2008) Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARgamma agonist. Am J Physiol Endocrinol Metab 295, E287-E296.
Bartesaghi S, Hallen S, Huang L, Svensson P-A, Momo RA, Wallin S, Carlsson EK, Forslöw A, Seale P & Peng X-R (2015) Thermogenic activity of UCP1 in human white fat-derived beige adipocytes. Mol Endocrinol 29, 130-139.
Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L et al. (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27, 2753-2760.
Ohno H et al. (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 395-404.
Harms MJ, Ishibashi J, Wang W, Lim H-W, Goyama S, Sato T, Kurokawa M, Won K-J & Seale P (2014) Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 19, 593-604.
Iida S et al. (2015) PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes Dev 29, 308-321.
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI & Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319.
Siersbaek R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LLC, Rogowska-Wrzesinska A, Jensen ON & Mandrup S (2014) Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep 7, 1443-1455.
Harms MJ, Lim H-W, Ho Y, Shapira SN, Ishibashi J, Rajakumari S, Steger DJ, Lazar MA, Won K-J & Seale P (2015) PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev 29, 298-307.
Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S & Spiegelman BM (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121, 96-105.
Stine RR, Shapira SN, Lim H-W, Ishibashi J, Harms M, Won K-J & Seale P (2016) EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab 5, 57-65.
Shinoda K, Luijten IHN, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng Y-H et al. (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21, 389-394.
Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V et al. (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7, e49452.
Villanueva CJ et al. (2013) Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab 17, 423-435.
Pearson S, Loft A, Rajbhandari P, Simcox J, Lee S, Tontonoz P, Mandrup S & Villanueva CJ (2019) Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes Dev 33, 747-762.
Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L, MacPherson KA, Spurgin SB, Sun K, Holland WL et al. (2016) Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab 23, 1167-1184.
Picard F, Géhin M, Annicotte J-S, Rocchi S, Champy M-F, O'Malley BW, Chambon P & Auwerx J (2002) SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931-941.
Christian M, Kiskinis E, Debevec D, Leonardsson Gran, White R & Parker MG (2005) RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 25, 9383-9391.
Powelka AM et al. (2006) Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest 116, 125-136.
Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So P-W, Medina-Gomez G, Vidal-Puig A, White R et al. (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 101, 8437-8442.
Wang H et al. (2008) Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol Cell Biol 28, 2187-2200.
Pan D et al. (2009) Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell 137, 73-86.
Jash S, Banerjee S, Lee M-J, Farmer SR & Puri V (2019) CIDEA transcriptionally regulates UCP1 for britening and thermogenesis in human fat cells. iScience 20, 73-89.
Kulyte A, Pettersson AT, Antonson P, Stenson BM, Langin D, Gustafsson J-Å, Staels B, Rydén M, Arner P & Laurencikiene J (2011) CIDEA interacts with liver X receptors in white fat cells. FEBS Lett 585, 744-748.
Li Y, Schwalie PC, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B & Klingenspor M (2019) Systems-genetics-based inference of a core regulatory network underlying white fat browning. Cell Rep 29, 4099-4113, e5.
Herz CT & Kiefer FW (2019) Adipose tissue browning in mice and humans. J Endocrinol 241, R97-R109.
Bargut TCL, Souza-Mello V, Aguila MB & Mandarim-de-Lacerda CA (2017) Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig 31. http://dx.doi.org/10.1515/hmbci-2016-0051
Kaisanlahti A & Glumoff T (2019) Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 75, 1-10.
Montanari T, Poscic N & Colitti M (2017) Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev 18, 495-513.
Cypess AM et al. (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21, 33-38.
Hao L, Scott S, Abbasi M, Zu Y, Khan MSH, Yang Y, Wu D, Zhao L & Wang S (2019) Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. J Pharmacol Exp Ther 369, 419-427.
O'Mara AE et al. (2020) Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest.130, 2209-2219. http://dx.doi.org/10.1172/jci131126
Bordicchia M, Liu D, Amri E-Z, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R & Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122, 1022-1036.
Merlin J et al. (2018) Rosiglitazone and a beta3-adrenoceptor agonist are both required for functional browning of white adipocytes in culture. Front Endocrinol (Lausanne) 9, 249.
Petrovic N et al. (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285, 7153-7164.
Markussen LK, Isidor MS, Breining P, Andersen ES, Rasmussen NE, Petersen LI, Pedersen SB, Richelsen B & Hansen JB (2017) Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor. PLoS One 12, e0185624.
Pisani DF et al. (2011) Differentiation of human adipose-derived stem cells into “brite” (brown-in-white) adipocytes. Front Endocrinol (Lausanne) 2, 87.
Maurer SF et al. (2019) Fatty acid metabolites as novel regulators of non-shivering thermogenesis. Handb Exp Pharmacol 251, 183-214.
Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Diaz MB, Rozman J, Hrabe de Angelis M, Nusing RM et al. (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158-1161.
Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R et al. (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5, e11391.
Ghandour RA, Giroud M, Vegiopoulos A, Herzig S, Ailhaud G, Amri E-Z & Pisani DF (2016) IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin. Biochim Biophys Acta 1861, 285-293.
Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D, Amri E-Z & Pisani DF (2017) Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 136, 3-11.
Garcia-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, López-Vicario C, Jakobsson P-J, Delgado S, Lozano J & Clària J (2016) Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One 11, e0153751.
Pisani DF et al. (2014) The omega6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 3, 834-847.
Frühbeck G, Fernández-Quintana B, Paniagua M, Hernández-Pardos AW, Valentí V, Moncada R, Catalán V, Becerril S, Gómez-Ambrosi J, Portincasa P et al. (2020) FNDC4, a novel adipokine that reduces lipogenesis and promotes fat browning in human visceral adipocytes. Metabolism 108, 154261.
Klusoczki A et al. (2019) Differentiating SGBS adipocytes respond to PPARgamma stimulation, irisin and BMP7 by functional browning and beige characteristics. Sci Rep 9, 5823.
Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T & Eckel J (2014) BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 306, C431-C440.
Lee JY, Takahashi N, Yasubuchi M, Kim Y-I, Hashizaki H, Kim M-J, Sakamoto T, Goto T & Kawada T (2012) Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Physiol Cell Physiol 302, C463-C472.
Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y et al. (2016) Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 311, E530-E541.
Gustafson B, Hammarstedt A, Hedjazifar S, Hoffmann JM, Svensson P-A, Grimsby J, Rondinone C & Smith U (2015) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64, 1670-1681.
Hanssen MJ, van der Lans AAJJ, Brans B, Hoeks J, Jardon KMC, Schaart G, Mottaghy FM, Schrauwen P & van Marken Lichtenbelt WD (2016) Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes 65, 1179-1189.
Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S et al. (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14, 272-279.
Hanssen MJ, Hoeks J, Brans B, van der Lans AAJJ, Schaart G, van den Driessche JJ, Jörgensen JA, Boekschoten MV, Hesselink MKC, Havekes B et al. (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21, 863-865.
Chondronikola M, Volpi E, Børsheim E, Porter C, Saraf MK, Annamalai P, Yfanti C, Chao T, Wong D, Shinoda K et al. (2016) Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab 23, 1200-1206.
Vijgen GH, Bouvy ND, Teule GJJ, Brans B, Schrauwen P & van Marken Lichtenbelt WD (2011) Brown adipose tissue in morbidly obese subjects. PLoS One 6, e17247.
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Schrauwen P & Teule GJJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360, 1500-1508.
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y-H, Doria A et al. (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 1509-1517.
Ouellet V et al. (2011) Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab 96, 192-199.
Challa TD, Dapito DH, Kulenkampff E, Kiehlmann E, Moser C, Straub L, Sun W & Wolfrum C (2020) A genetic model to study the contribution of brown and brite adipocytes to metabolism. Cell Rep 30, 3424-3433, e4.
Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de las Fuentes L, He S, Okunade AL, Patterson BW et al. (2016) Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23, 591-601.
Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL & Swinburn BA (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826-837.
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N-J, Enerbäck S et al. (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360, 1518-1525.
Dieckmann S, Maurer S, Fromme T, Colson C, Virtanen KA, Amri E-Z & Klingenspor M (2020) Fatty acid metabolite profiling reveals oxylipins as markers of brown but not brite adipose tissue. Front Endocrinol (Lausanne) 11, 73.
Crichton PG, Lee Y & Kunji ER (2017) The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 134, 35-50.
Hoang T, Smith MD & Jelokhani-Niaraki M (2013) Expression, folding, and proton transport activity of human uncoupling protein-1 (UCP1) in lipid membranes: evidence for associated functional forms. J Biol Chem 288, 36244-36258.
Shabalina IG, Ost M, Petrovic N, Vrbacky M, Nedergaard J & Cannon B (2010) Uncoupling protein-1 is not leaky. Biochim Biophys Acta 1797, 773-784.
Johann K, Cremer AL, Fischer AW, Heine M, Pensado ER, Resch J, Nock S, Virtue S, Harder L, Oelkrug R et al. (2019) Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep 27, 3385-3400, e3.
Tews D, Pula T, Funcke JB, Jastroch M, Keuper M, Debatin KM, Wabitsch M & Fischer-Posovszky P (2019) Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biol 26, 101286.
Lee KY, Luong Q, Sharma R, Dreyfuss JM, Ussar S & Kahn CR (2019) Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J 38. http://dx.doi.org/10.15252/embj.201899291
Lee KY et al. (2017) Tbx15 defines a glycolytic subpopulation and white adipocyte heterogeneity. Diabetes 66, 2822-2829.
Chau YY, Bandiera R, Serrels A, Martínez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S et al. (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16, 367-375.
Sanchez-Gurmaches J & Guertin DA (2014) Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 5, 4099.
Sanchez-Gurmaches J, Hsiao WY & Guertin DA (2015) Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Reports 4, 541-550.
Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z et al. (2019) Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565, 180-185.
Lee YH, Kim S-N, Kwon H-J & Granneman JG (2017) Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep 7, 39794.
Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W et al. (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19, 810-820.
Song A, Dai W, Jang MJ, Medrano L, Li Z, Zhao H, Shao M, Tan J, Li A, Ning T et al. (2020) Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J Clin Invest 130, 247-257.
Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, Harms MJ, Shilkova O, Kozina V, Nedergaard J et al. (2018) Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep 24, 2746-2756, e5.
Zhang F, Hao G, Shao M, Nham K, An Y, Wang Q, Zhu Y, Kusminski CM, Hassan G, Gupta RK et al. (2018) An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents. Cell Metab 27, 252-262, e3.
Walden TB, Hansen IR, Timmons JA, Cannon B & Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab 302, E19-E31.
de Jong JM, Larsson O, Cannon B & Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308, E1085-E105.
Barreau C, Labit E, Guissard C, Rouquette J, Boizeau M-L, Gani Koumassi S, Carrière A, Jeanson Y, Berger-Müller S, Dromard C et al. (2016) Regionalization of browning revealed by whole subcutaneous adipose tissue imaging. Obesity (Silver Spring) 24, 1081-1089.
Chi J, Wu Z, Choi CHJ, Nguyen L, Tegegne S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M & Cohen P (2018) Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab 27, 226-236, e3.
Wang H, Willershäuser M, Karlas A, Gorpas D, Reber J, Ntziachristos V, Maurer S, Fromme T, Li Y & Klingenspor M (2019) A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab 20, 14-27.
Chan M, Lim YC, Yang J, Namwanje M, Liu L & Qiang L (2019) Identification of a natural beige adipose depot in mice. J Biol Chem 294, 6751-6761.
Zuriaga MA, Fuster JJ, Gokce N & Walsh K (2017) Humans and mice display opposing patterns of “browning” gene expression in visceral and subcutaneous white adipose tissue depots. Front Cardiovasc Med 4, 27.
Lim J, Park HS, Kim J, Jang YJ, Kim J-H, Lee YJ & Heo Y (2020) Depot-specific UCP1 expression in human white adipose tissue and its association with obesity-related markers. Int J Obes (Lond) 44, 697-706.
Tarabra E, Nouws J, Vash-Margita A, Nadzam GS, Goldberg R, Van Name M, Pierpont B, Knight JR, Shulman GI & Caprio S (2020) The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight 5. http://dx.doi.org/10.1172/jci.insight.135448
Ukropec J et al. (2006) UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem 281, 31894-31908.
Maurer SF, Fromme T, Mocek S, Zimmermann A & Klingenspor M (2020) Uncoupling protein 1 and the capacity for nonshivering thermogenesis are components of the glucose homeostatic system. Am J Physiol Endocrinol Metab 318, E198-E215.
Pollard AE, Martins L, Muckett PJ, Khadayate S, Bornot A, Clausen M, Admyre T, Bjursell M, Fiadeiro R, Wilson L et al. (2019) AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat Metab 1, 340-349.
Liu X, Rossmeisl M, McClaine J & Kozak LP (2003) Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 111, 399-407.
Nyman E, Bartesaghi S, Melin Rydfalk R, Eng S, Pollard C, Gennemark P, Peng X-R & Cedersund G (2017) Systems biology reveals uncoupling beyond UCP1 in human white fat-derived beige adipocytes. NPJ Syst Biol Appl 3, 29.
Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel B, Tavernier G, Marques M-A, Moro C et al. (2016) White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 5, 352-365.
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al. (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643-655.
Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, Zhang S, Ramsay LA, Dou FY, Tenen D et al. (2019) Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 1, 360-370.
Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Paranjpe I, Wainwright GL, Bétourné A, Kajimura S, Spiegelman BM & Kirichok Y (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25, 811-822, e4.
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P et al. (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23, 1454-1465.
Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, Lou J, Rao RR, Chang MR, Jedrychowski MP et al. (2016) The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 166, 424-435.
Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N et al. (2019) H(+) transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 571, 515-520.
Roesler A & Kazak L (2020) UCP1-independent thermogenesis. Biochem J 477, 709-725.
Tharp KM, Jha AK, Kraiczy J, Yesian A, Karateev G, Sinisi R, Dubikovskaya EA, Healy KE & Stahl A (2015) Matrix-assisted transplantation of functional beige adipose tissue. Diabetes 64, 3713-3724.
Stanford KI, Middelbeek RJW, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng Y-H et al. (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123, 215-223.
Finlin BS et al. (2020) The beta3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Invest.130, 2319-2331. http://dx.doi.org/10.1172/jci134892
Brown E et al. (2019) Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev 20, 816-828.
Schnabl K, Li Y & Klingenspor M (2020) The gut hormone secretin triggers a gut-brown fat-brain axis in the control of food intake. Exp Physiol. http://dx.doi.org/10.1113/ep087878
Li Y, Schnabl K, Gabler S-M, Willershäuser M, Reber J, Karlas A, Laurila S, Lahesmaa M, Din MU, Bast-Habersbrunner A et al. (2018) Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175, 1561-1574, e12.
Din MU, Saari T, Raiko J, Kudomi N, Maurer SF, Lahesmaa M, Fromme T, Amri E-Z, Klingenspor M, Solin O et al. (2018) Postprandial oxidative metabolism of human brown fat indicates thermogenesis. Cell Metab 28, 207-216, e3.
Clemmensen C et al. (2018) Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nat Commun 9, 4304.
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al. (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17, 200-205.
van den Berg R, Kooijman S, Noordam R, Ramkisoensing A, Abreu-Vieira G, Tambyrajah LL, Dijk W, Ruppert P, Mol IM, Kramar B et al. (2018) A diurnal rhythm in brown adipose tissue causes rapid clearance and combustion of plasma lipids at wakening. Cell Rep 22, 3521-3533.
Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM, Hurren NM et al. (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089-4099.
Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh H-L, Kim JK, Cooper MP, Fitzgibbons T et al. (2016) Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22, 312-318.
Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, Brunner AD, Larsen TJ, Bayarri-Olmos R, Prabhakar BS et al. (2019) Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab 30, 963-975, e7.
Villarroya F, Cereijo R, Villarroya J & Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13, 26-35.
Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR et al. (2016) A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 23, 454-466.
Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein C, Lee A et al. (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23, 631-637.
Leiria LO, Wang C-H, Lynes MD, Yang K, Shamsi F, Sato M, Sugimoto S, Chen EY, Bussberg V, Narain NR et al. (2019) 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab 30, 768-783, e7.
Moisan A, Lee Y-K, Zhang JD, Hudak CS, Meyer CA, Prummer M, Zoffmann S, Truong HH, Ebeling M, Kiialainen A et al. (2015) White-to-brown metabolic conversion of human adipocytes by JAK inhibition. Nat Cell Biol 17, 57-67.
Choi JH et al. (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466, 451-456.
Banks AS et al. (2015) An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma. Nature 517, 391-395.
Choi SS et al. (2016) PPARgamma antagonist gleevec improves insulin sensitivity and promotes the browning of white adipose tissue. Diabetes 65, 829-839.
Wang H, Liu L, Lin JZ, Aprahamian TR & Farmer SR (2016) Browning of white adipose tissue with roscovitine induces a distinct population of UCP1(+) adipocytes. Cell Metab 24, 835-847.
Li S, Li Y, Xiang L, Dong J, Liu M & Xiang G (2018) Sildenafil induces browning of subcutaneous white adipose tissue in overweight adults. Metabolism 78, 106-117.
Baskin AS et al. (2018) Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a beta3-adrenergic receptor agonist. Diabetes 67, 2113-2125.
Loh RKC, Formosa MF, La Gerche A, Reutens AT, Kingwell BA & Carey AL (2019) Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes Obes Metab 21, 276-284.